Introduction	Model Setup	Auction Stage	Special Cases	General Model	Analysis	Conclusions
000000	00	00000	00000000000	0	0000	0

Means of Payment and Timing of Mergers and Acquisitions in a Dynamic Economy

Alexander S. Gorbenko LBS and USC Andrey Malenko MIT Sloan

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cambridge Corporate Finance Theory Symposium September 19 - 20, 2014

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An acquisition is one of the most important firm's decisions

- 2007: \$4.8 trillion worldwide volume of M&A deals
- 2013: \$2.9 trillion worldwide volume of M&A deals

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An acquisition is one of the most important firm's decisions

- 2007: \$4.8 trillion worldwide volume of M&A deals
- 2013: \$2.9 trillion worldwide volume of M&A deals

Important decisions for bidding firms

- Timing: when to initiate bidding
- Payment: how much to bid
- Means of payment: cash vs. stock

A unified model that links bidders' cash constraints to propensity of bidders to make acquisitions and deal characteristics (means of payment and premium)

- How are they interrelated?
- Is the effect of cash constraints on propensity to acquire "conventional"?

A unified model that links bidders' cash constraints to propensity of bidders to make acquisitions and deal characteristics (means of payment and premium)

- How are they interrelated?
- Is the effect of cash constraints on propensity to acquire "conventional"?

Three building blocks:

- Dynamic decision-making: Decision to bid is analogous to an exercise of an American option
- Private information: A bidder privately knows synergies
- Cash constraints: Bidders can only pay cash up to a budget constraint

Preview of the Results

1. The effect of a bidder's cash constraint is not obvious:

- A constraint does not make a bidder weaker
- Usually: leads to fewer and later acquisitions
- But: If the target is a high-synergy high-growth firm, cash constraints can lead to more acquisitions

Preview of the Results

1. The effect of a bidder's cash constraint is not obvious:

- A constraint does not make a bidder weaker
- Usually: leads to fewer and later acquisitions
- But: If the target is a high-synergy high-growth firm, cash constraints can lead to more acquisitions

2. Both bidder's own and rival's cash constraints matter

• A bidder is less likely to acquire if the rival is constrained

Preview of the Results

- 1. The effect of a bidder's cash constraint is not obvious:
 - A constraint does not make a bidder weaker
 - Usually: leads to fewer and later acquisitions
 - But: If the target is a high-synergy high-growth firm, cash constraints can lead to more acquisitions
- 2. Both bidder's own and rival's cash constraints matter
 - A bidder is less likely to acquire if the rival is constrained
- 3. Implications for means of payment, takeover premium
 - High-synergy targets are acquired young and small and with cash
 - Low-synergy targets are acquired after they have grown and with stock
 - Cash deals can feature higher takeover premia than stock deals despite the fact that bidders prefer to pay cash

Related Literature

Introduction 000000 lel Setup

Auction St 00000 Special Cases 000000000000 General Model

Analysis 0

Related Literature

Cash versus Security Bids

Hansen (1985) Fishman (1989) Eckbo, Giammarino, and Heinkel (1990) Rhodes-Kropf and Viswanathan (2000) DeMarzo, Kremer, Skrzypacz (2005) Gorbenko and Malenko (2011)

Static models: Assume that bidding takes place at a given time

Mergers as real options

Lambrecht (2004) Lambrecht and Myers (2007), Hackbarth and Morellec (2008), Morellec and Zhdanov (2008), Hackbarth and Miao (2012)

- 1. Cash and stock bids are equivalent.
- Financing constraints do not matter.

Introduction 000000 Model Setup 00 Auction S

Special Cases

General Model

Analysis (

0000

Conclusion O

Related Literature

Cash versus Security Bids

Hansen (1985) Fishman (1989) Eckbo, Giammarino, and Heinkel (1990) Rhodes-Kropf and Viswanathan (2000) DeMarzo, Kremer, Skrzypacz (2005) Gorbenko and Malenko (2011)

Static models: Assume that bidding takes place at a given time

Mergers as real options

Lambrecht (2004) Lambrecht and Myers (2007), Hackbarth and Morellec (2008), Morellec and Zhdanov (2008), Hackbarth and Miao (2012)

- 1. Cash and stock bids are equivalent.
- Financing constraints do not matter.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This paper

Introduction	Model Setup	Auction Stage	Special Cases	General Model	Analysis	Conclusions		
000000	●○	00000	00000000000	O	0000	O		
Model Setup I								

• Three agents: a risk-neutral target and two risk-neutral potential bidders. Discount rate *r*.

- Three agents: a risk-neutral target and two risk-neutral potential bidders. Discount rate *r*.
- The stand-alone value of the target's assets at time t is X_t:

$$dX_t = \mu X_t dt + \sigma X_t dB_t, \ \mu < r.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(e.g., generates a cash flow of rX_t at any t, reinvests μX_t)

- Three agents: a risk-neutral target and two risk-neutral potential bidders. Discount rate *r*.
- The stand-alone value of the target's assets at time t is X_t:

$$dX_t = \mu X_t dt + \sigma X_t dB_t, \ \mu < r.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(e.g., generates a cash flow of rX_t at any t, reinvests μX_t)

- The stand-alone value of each bidder's assets is Π_b .
 - e.g., generates $r\Pi_b$ per unit time and pays it out.

- Three agents: a risk-neutral target and two risk-neutral potential bidders. Discount rate *r*.
- The stand-alone value of the target's assets at time t is X_t:

$$dX_t = \mu X_t dt + \sigma X_t dB_t, \ \mu < r.$$

(e.g., generates a cash flow of rX_t at any t, reinvests μX_t)

- The stand-alone value of each bidder's assets is Π_b .
 - e.g., generates $r\Pi_b$ per unit time and pays it out.
- If bidder *i* acquires the target, the value of the combined firm is

$$\Pi_b + v_i X_t$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Synergies $v_i \in [\underline{v}, \overline{v}]$, $\overline{v} > \underline{v} > 1$ are i.i.d. draws from distribution with p.d.f. f(v) > 0. Bidder *i* learns v_i privately at date 0.

- Three agents: a risk-neutral target and two risk-neutral potential bidders. Discount rate *r*.
- The stand-alone value of the target's assets at time t is X_t:

$$dX_t = \mu X_t dt + \sigma X_t dB_t, \ \mu < r.$$

(e.g., generates a cash flow of rX_t at any t, reinvests μX_t)

- The stand-alone value of each bidder's assets is Π_b .
 - e.g., generates $r\Pi_b$ per unit time and pays it out.
- If bidder *i* acquires the target, the value of the combined firm is

$$\Pi_b + v_i X_t$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Synergies $v_i \in [\underline{v}, \overline{v}]$, $\overline{v} > \underline{v} > 1$ are i.i.d. draws from distribution with p.d.f. f(v) > 0. Bidder *i* learns v_i privately at date 0.

• If bidder i loses, her new stand-alone value is $\Pi_o < \Pi_b$. Denote $\Delta \equiv \Pi_b - \Pi_o$.

At any instant, a bidder can approach the target with an offer

- If a bidder approaches the target, an open ascending-bid (English) auction is initiated
- Bids can be made in cash, stock of the combined firm, or mixes.

At any instant, a bidder can approach the target with an offer

- If a bidder approaches the target, an open ascending-bid (English) auction is initiated
- Bids can be made in cash, stock of the combined firm, or mixes.

Introduce cash constraints

• Bidder *i* can pay up to C_i in cash. C_1 and C_2 are commonly known.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Formalize competition by extending the "button" model of Milgrom and Weber (1982):

- Price *p* gradually rises.
- A bidder confirms participation until she chooses to drop.
- The remaining bidder makes an offer (b, α) of \$b and fraction α of the combined firm.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The offer is accepted if and only if $\mathbb{E}\left[b + \alpha \left(\Pi_b + vX_t\right) | \mathcal{I}^s\right] \geq p$.

Formalize competition by extending the "button" model of Milgrom and Weber (1982):

- Price *p* gradually rises.
- A bidder confirms participation until she chooses to drop.
- The remaining bidder makes an offer (b, α) of \$b and fraction α of the combined firm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• The offer is accepted if and only if $\mathbb{E}\left[b + \alpha \left(\Pi_b + vX_t\right) | \mathcal{I}^s\right] \geq p$.

Restrictions:

- Weakly undominated strategies;
- D1 restriction on beliefs off-the-equilibrium path.

Auction Stage: Equilibria

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The most *seller-friendly* equilibrium:

- A bidder bids up to $p(v) = vX_t + \Delta$;
- If a bidder wins at price \hat{p} , offer $(b, \alpha) = \left(\min \left\{\hat{p}, C_i\right\}, \max \left\{\frac{\hat{p} - C_i}{\prod_b + X_t p^{-1}(\hat{p})}\right\}\right).$

Auction Stage: Equilibria

The most *seller-friendly* equilibrium:

- A bidder bids up to $p(v) = vX_t + \Delta$;
- If a bidder wins at price \hat{p} , offer $(b, \alpha) = \left(\min \left\{ \hat{p}, C_i \right\}, \max \left\{ \frac{\hat{p} - C_i}{\Pi_b + X_t p^{-1}(\hat{p})} \right\} \right).$

The most bidder-friendly equilibrium:

• A bidder bids up to $p_i(v) = vX_t + \Delta + \max \left\{ vX_t + \Delta - C_i, 0 \right\} \frac{X_t \mathbb{E}_t [w - v | w \ge v]}{\prod_b + X_t v}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• If a bidder wins at price \hat{p} , offer $(b, \alpha) = \left(\min \left\{\hat{p}, C_i\right\}, \max \left\{\frac{\hat{p} - C_i}{\prod_b + X_t \mathbb{E}[w - v | w \ge v]}\right\}\right).$ ntroduction 000000 Model Se 00 Auction Stage

Special Cases

General Model O ysis Cor DO O

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Auction Stage

Consider the seller-friendly equilibrium. Suppose bidder with type v wins against the rival with type w < v.

Auction Stage

Auction Stage

Consider the seller-friendly equilibrium. Suppose bidder with type v wins against the rival with type w < v.

Cash constraint is not binding ($C > wX_t + \Delta$). The winner's payoff less pre-acquisition value is

$$\Pi_b + vX_t - (wX_t + \Delta) - \Pi_b$$

= $(v - w) X_t - \Delta$.

Auction Stage

Auction Stage

Consider the seller-friendly equilibrium. Suppose bidder with type v wins against the rival with type w < v.

Cash constraint is not binding ($C > wX_t + \Delta$). The winner's payoff less pre-acquisition value is

$$\Pi_b + vX_t - (wX_t + \Delta) - \Pi_b$$

= $(v - w) X_t - \Delta$.

Cash constraint is binding ($C < wX_t + \Delta$). The winner's payoff less pre-acquisition value is:

$$(1 - \alpha (C, wX_t + \Delta)) (\Pi_b + vX_t) - C - \Pi_b$$

= $\frac{\Pi_o + C}{\Pi_b + wX_t} (\Pi_b + vX_t) - C - \Pi_b$
= $\frac{\Pi_o + C}{\Pi_b + wX_t} (v - w) X_t - \Delta.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cash constraint is not binding:

$$(v-w)X_t-\Delta.$$

Cash constraint is binding:

$$\frac{\Pi_o + C}{\Pi_b + wX_t} \left(v - w \right) X_t - \Delta.$$

Two effects:

- 1. *Static*. The winner's payoff is higher if the cash constraint does not bind \Rightarrow Wants to delay
- 2. Dynamic. The winner's payoff increases slower as the target grows \Rightarrow Does not want to delay

1. Special Cases

- 1.1 Case 1: Unconstrained bidders ($C_1 = C_2 = \infty$)
- 1.2 Case 2: Extremely constrained bidders ($C_1 = C_2 = 0$)
- 1.3 Case 3: One unconstrained bidder and one extremely constrained bidder

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2. General cash constraints: Endogenous Means of Payment

1. Special Cases

- 1.1 Case 1: Unconstrained bidders ($C_1 = C_2 = \infty$)
- 1.2 Case 2: Extremely constrained bidders ($C_1 = C_2 = 0$)
- 1.3 Case 3: One unconstrained bidder and one extremely constrained bidder
- 2. General cash constraints: Endogenous Means of Payment

Equilibrium selection: MPBE in separating thresholds

 Type v of bidder i initiates a bid for the target when X (t) reaches threshold X
_i (v);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$\bar{X}_i(v_1) = \bar{X}_i(v_2) < \infty \Rightarrow v_1 = v_2.$$

Case 1: unconstrained bidders

Conjecture (and later confirm) that type v initiates the auction when X(t) reaches $\overline{X}_{c}(v)$, where $\overline{X}_{c}(\cdot)$ is a decreasing function.

If a bidder with valuation v approaches the target at threshold \overline{X} , her expected payoff is

Case 1: unconstrained bidders

Proposition 2 (separating threshold equilibrium). Conditional on the rival not initiating yet, a bidder with valuation v initiates when X(t) reaches threshold

 $\overline{X}_{c}(v)$ is decreasing in v. A bidder with the higher valuation initiates and wins.

Case 2: constrained bidders

Conjecture (and later confirm) that type v initiates the auction when X(t) reaches $\overline{X}_{s}(v)$, where $\overline{X}_{s}(\cdot)$ is a decreasing function.

If a bidder with valuation v approaches the target at threshold \overline{X} , her expected payoff is

Case 2: constrained bidders

Proposition 3 (separating threshold equilibrium). Bidder with the higher valuation v initiates the auction and wins. The initiation strategy is given by threshold

$$\overline{X}_{s}(v) = \frac{\beta}{\beta - 1} \underbrace{\frac{\prod_{o} (\prod_{b} + \frac{\beta}{\beta - 1}w\overline{X}_{s}(v))}{\left(\prod_{b} + w\overline{X}_{s}(v)\right)^{2}}(v - w) | w \leq v}_{\text{Marginal expected increase}}$$
in target's efficiency
captured by the acquirer

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Case 2: constrained bidders, intuition

Decompose the denominator into two intuitive parts:

$$\underbrace{E\left[\frac{\Pi_{o}\left(v-w\right)}{\Pi_{b}+w\overline{X}_{s}\left(v\right)}|w\leq v\right]}_{\text{Paying stock is costlier}} + \underbrace{\frac{1}{\beta-1}E\left[\frac{\Pi_{o}\left(v-w\right)w\overline{X}_{s}\left(v\right)^{2}}{\left(\Pi_{b}+w\overline{X}_{s}\left(v\right)\right)^{2}}|w\leq v\right]}_{\text{Pay a higher fraction of the surplus to the target, as it grows}}$$

- The first term delays the acquisition relative to the cash case
- The second term accelerates the acquisition
 - Important if the target grows fast or has high asset volatility

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Is low when v is low

Case 2: constrained bidders, intuition

Decompose the denominator into two intuitive parts:

$$\underbrace{E\left[\frac{\Pi_{o}\left(v-w\right)}{\Pi_{b}+w\overline{X}_{s}\left(v\right)}|w\leq v\right]}_{\text{Paying stock is costlier}} + \underbrace{\frac{1}{\beta-1}E\left[\frac{\Pi_{o}\left(v-w\right)w\overline{X}_{s}\left(v\right)^{2}}{\left(\Pi_{b}+w\overline{X}_{s}\left(v\right)\right)^{2}}|w\leq v\right]}_{\text{Pay a higher fraction of the surplus to the target, as it grows}}$$

- The first term delays the acquisition relative to the cash case
- The second term accelerates the acquisition
 - Important if the target grows fast or has high asset volatility

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Is low when v is low

Proposition 4 ("normal" case). If $\frac{\beta}{\beta-1} < 2\frac{\Pi_b}{\Pi_o}$, then for all v, $\overline{X}_c(v) < \overline{X}_s(v)$.

Cases 1 and 2: initiation strategies

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Introduction	Model Setup	Auction Stage	Special Cases	General Model	Analysis	Conclusions
000000	00	00000	0000000000	0	0000	0

Cases 1 and 2: initiation strategies

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Cases 1 and 2: initiation strategies

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Case 3: initiation strategies

Case 3: initiation strategies

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Case 3: initiation strategies

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Now, bidder *i* can bid up to C_i in cash

- Means of payment becomes endogenous
- Cash is "cheaper" than stock

General model, auction

Now, bidder i can bid up to C_i in cash

- Means of payment becomes endogenous
- Cash is "cheaper" than stock

Stock will only be used if the cash constraint binds:

- If $C_i \ge \prod_b + v_i X_t \prod_o$, then bidder *i* bids in cash
- Otherwise, bidder *i* bids up to C_i in cash and $\alpha_i = \frac{\prod_b + v_i X_t \prod_o C_i}{\prod_b + v_i X_t}$ in stock.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Companies acquired in stock/mixes are larger and older

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Companies acquired in stock/mixes are larger and older

Companies acquired in cash generate higher synergies per dollar

Companies acquired in stock/mixes are larger and older

Companies acquired in cash generate higher synergies per dollar

Conditional on winner's valuation, a premium in a stock deal is higher than in a cash deal

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Companies acquired in stock/mixes are larger and older

Companies acquired in cash generate higher synergies per dollar

Conditional on winner's valuation, a premium in a stock deal is higher than in a cash deal

If we pool all cash vs. all non-cash deals, we can observe that *bidders pay* a higher average takeover premium in cash deals

• Cash deals are the best, so the target receives a smaller part of a larger pie

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Companies acquired in stock/mixes are larger and older

Companies acquired in cash generate higher synergies per dollar

Conditional on winner's valuation, a premium in a stock deal is higher than in a cash deal

If we pool all cash vs. all non-cash deals, we can observe that *bidders pay* a higher average takeover premium in cash deals

• Cash deals are the best, so the target receives a smaller part of a larger pie

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Non-cash bidders receive lower acquirer gains

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Takeover probabilities and target size

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What Happens in the Bidder-Friendly Equilibrium?

If the bidder-friendly equilibrium is played in the auction, then:

- A bidder has incentives to signal that his type is high to dump overpriced equity to the seller.
- In equilibrium, constraints lead to earlier initiation, and the seller is not fooled.
 - The effect is absent for high enough types, since they have enough cash at the acquisition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A simple dynamic model of acquisitions with basic frictions: asymmetric information and cash constraints

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

A simple dynamic model of acquisitions with basic frictions: asymmetric information and cash constraints

Timing of the deal, means of payment, and financial constraints of bidders are all interrelated

- Effects of cash constraints are non-trivial
- Many model implications seem to be consistent with cross-sectional and time-series empirical evidence

A simple dynamic model of acquisitions with basic frictions: asymmetric information and cash constraints

Timing of the deal, means of payment, and financial constraints of bidders are all interrelated

- Effects of cash constraints are non-trivial
- Many model implications seem to be consistent with cross-sectional and time-series empirical evidence

Potential future research:

- Target- versus bidder-initiated takeover contests
- Permanent versus transitory shocks to financial constraints and merger waves