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Abstract

We develop and structurally estimate a dynamic model of corporate liquidity and
risk management. When external finance is costly, liquid funds provide corporations
with instruments to absorb and react to shocks. Making optimal use of liquid funds
means transferring them to times and states where they are most valuable. In the
model, firms can transfer liquidity across time using cash and across states drawing on
credit lines subject to debt capacity constraints. Optimal liquidity management arises
as a trade-off between conditional liquidity with credit lines subject to collateral con-
straints and uncontingent liquidity using cash. The estimated model explains well the
cross-sectional and time series patterns of corporate liquidity management: Small and
constrained firms use cash to provide liquidity to fund investment opportunities, and
large and unconstrained firms rely on credit lines. While equity issuances are used to
replenish cash balances, credit lines fund unanticipated investment opportunities. To
solve the model, we develop a novel and efficient approach to dynamic programming
relying on linear programming, that is more widely applicable to high-dimensional dy-
namic models.
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1. Introduction

When external finance is costly, liquid funds provide corporations with instruments to absorb

and react to shocks. Making optimal use of liquid funds means transferring them to times

and states where they are most valuable. Liquid funds may be valuable because they aid fi-

nancing of a profitable investment opportunity, or because they help covering cash shortfalls.

Anticipations of such future states thus provide a rationale for corporate liquidity manage-

ment and renders it inherently dynamic. One way to implement liquidity management is

using uncontingent instruments, such as holding cash, which transfers liquid funds across all

states symmetrically. We will refer to such policies as unconditional liquidity management.

Alternative instruments, such as credit lines or derivatives, have a more state-contingent

flavor in that corporations may draw on them to transfer funds to specific states only. We

will refer to such policies as conditional liquidity management.

In practice, we see firms engaging in many combinations of conditional and unconditional

liquidity management policies, yet there is relatively little work attempting to understand

the determinants of these choices. In this paper, our objective is to take a step towards filling

this gap. We do so by proposing a dynamic model of corporate policies that explicitly allows

corporations to transfer liquid funds unconditionally using cash and conditionally by draw-

ing on credit lines1. The result is a quantitative theory of optimal liquidity management

based on the trade-off between conditional liquidity subject to collateral constraints and

unconditional, unconstrained liquidity. In the model, liquidity needs arise from stochastic

investment opportunities and cash shortfalls in the context of high leverage. By estimating

the model structurally by means of the simulated method of moments (SMM), we provide

novel empirical predictions on the cross-sectional and time-series determinants of corpora-

tions’ liquidity policies. We test these predictions empirically using data on credit lines from

CapitalIQ and find strong support for them. The model thus provides a quantitatively and

empirically successful framework rationalizing corporate investment, financing and liquidity

policies and the joint occurrence of cash, debt and credit lines in the presence of capital

market imperfections.

1Credit lines play a first-order role for firm’s financing. As Sufi (2009) points out, over 80 percent of bank
debt held by public firms is in the form of lines of credit. Moreover, Colla, Ippolito, and Li (2013) report
that the drawn part alone of credit lines accounts for more than 20 percent of the debt structure of US listed
firms.
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In the model, firms attempt to take advantage of profitable investment opportunities that

arise stochastically. However, due to capital market imperfections, issuing equity entails costs

such that firms will find it beneficial to exploit the tax benefits of leverage by issuing debt.

However, we assume that debt needs to be collateralized by capital so that all debt is secured.

This means that firms’ debt capacity is endogenously bounded. In this context, a rationale

for liquidity management arises. Firms can transfer liquidity unconditionally across all states

by saving, that is, by holding cash. On the other hand, firms can preserve debt capacity

in a state-contingent way by drawing on their credit lines as economic conditions dictate.

This allows firms to transfer liquidity conditionally to specific states only. We show that the

model predicts that firms will exploit conditional and unconditional liquidity management

highly differentially both in the cross-section and in the time series. Estimating the model,

we find that such differential use of liquidity management provides a coherent explanation

for many stylized facts about firms joint investment, financing and liquidity policies.

Our model rationalizes the empirical evidence that firms simultaneously hold cash and

debt, hence corroborating the notion that cash is not negative debt. Within the context of our

model, the intuition is simple. While debt and credit lines jointly allow for state-contingency

within the limits of debt capacity, holding cash allows to transfer liquidity beyond collateral

constraints in case of high financing needs. Such high financing needs most likely arise when

firms have many profitable investment opportunities. In this context, the model predicts

that small firms and constrained firms (as measured by net worth) hold more cash, all else

equal. This is a pattern well documented in the data, indicating that such firms mostly

manage liquidity by means of unconditional instruments. On the other hand, large firms

and relatively unconstrained firms are predicted to hold less cash and have more undrawn

credit, indicating that they rely more conditional policies for liquidity management. We

confirm this prediction using data on credit lines from CapitalIQ. Our model also replicates

the well documented positive relationship between leverage and size.

An important implication of the model is that empirically we carefully need to distinguish

between small firms (as measured by the capital stock) and constrained firms (as measured

by net worth). Indeed, these variables are the two relevant (endogenous) state variables in

the model. While the two variables are indeed somewhat correlated, we document the need of

distinguishing them by means of panel regressions of the amount of transferred liquidity, and
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of the fraction of liquidity transferred conditionally through undrawn credit on capital and

net worth. These regressions suggest that the main driver of cash holdings is capital, while

financial constraints matter less. Since low capital implies valuable growth opportunities

(in a model with decreasing returns to scale), this suggests that unconditional liquidity

management mostly serves to transfer funds to states with high investment opportunities. On

the other hand, the amount of undrawn credit significantly varies with net worth, controlling

for capital. Indeed, unconstrained firms have more slack on their credit lines, so that the

transfer more funds to valuable states conditionally. Symmetrically, constrained firms mostly

exhaust their debt capacity. This is consistent with the notion, developed in Rampini and

Viswanathan (2010), and Rampini and Viswanathan (2012a), that constrained firms hedge

less, and that if they do, they do it unconditionally using cash. We find strong support for

these predictions in the data, suggesting the need to distinguish between size and financial

constraints, in contrast to most commonly used financial constraint indicators in empirical

work. Moreover, these findings suggest that cross-sectionally we can distinguish firms whose

liquidity management is mostly dictated by preserving liquidity for investment opportunities,

which we label ’upstate hedging’, as opposed to firms preserving liquidity in order to cover

cash shortfalls, which we label ’downstate hedging’. In particular, our findings suggest that

different instruments serve such liquidity needs better. Figure 1 illustrates our results.

Our analysis points to the importance of examining financing and liquidity policies in

the context of investment opportunities, and in particular, investment frictions. While it

is well known that financing policies in dynamic investment models exhibit considerable

sensitivity to the specification of investment technologies, we reinforce such results in the

context of measures of firms’ liquidity management. Obstructions to frictionless adjustment

of the capital stock in dynamic corporate models are most commonly represented by means

of a convex (quadratic) adjustment cost. Our results clearly indicate that fixed costs of

adjustment are important to understand liquidity management at the firm level, and cash

holdings in particular.

From a computational viewpoint, we introduce linear programming methods into dy-

namic corporate finance. Accounting for conditional liquidity management by means of

state-contingent policies introduces a large number of control variables into our setup which

would render our model subject to the curse of dimensionality for standard computational
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methods. We exploit and extend linear programming methods to circumvent this problem

and efficiently solve for the value and policy functions in this class of problems. Linear

programming methods, while common in operations research, have been introduced into

economics and finance by Trick and Zin (1993, 1997). We extend their methods to setups

common in corporate finance. More specifically, we exploit a separation oracle, an auxil-

iary mixed integer programming problem, to deal with large state spaces and find efficient

implementations of Trick and Zin’s constraint generation algorithm.

Our paper is at the intersection of several converging lines of literature. In particular

we interpret the quantitative literature on dynamic investment and financing (as started by

Gomes (2001), Hennessy and Whited (2005), and Hennessy and Whited (2007)) further in

light of the recently emerged literature on dynamic risk management and hedging in the

context of collateralized debt (Rampini and Viswanathan (2010), Rampini and Viswanathan

(2012a)). We build on Rampini and Viswanathan by modeling state-contingent debt subject

to collateral constraints. While Rampini and Viswanathan operate in a dynamic optimal

contracting framework, we take the form of the contracts as exogenously given and interpret

them in the wider context of commonly used frictions in the dynamic financing literature,

such as equity issuance costs and investment frictions. Most importantly, we allow firms

to use cash as a form of liquidity management. While these leads to a distinct set of

empirical predictions, we moreover view our paper as contributing more to the quantitative

and empirical literature rather than the one on optimal security design.

Our paper is closely related to the emerging literature on firm policies and cash holdings.

A non-exhaustive list includes Gamba and Triantis (2008), Nikolov and Whited (2009),

Morellec and Nikolov (2009), Hugonnier, Malamud and Morellec (2011), Bolton, Chen, and

Wang (2011), Falato, Kadyrzhanova, and Sim (2013), Bolton, Chen, and Wang (2012), and

Eisfeldt and Muir (2013). Our main departure from this line of literature is that we allow

for conditional liquidity management that we interpret in the context of credit lines. Our

empirical results suggest that this is a relevant model feature. In this context, our paper

is most closely related to Bolton, Chen and Wang (2011, 2012), who allow firms to access

credit lines and hedge aggregate shocks using derivatives. On the other hand, for tractability,

these authors operate within an AK-framework which allows to reduce the number of state

variables and to obtain analytical solutions up to an ordinary differential equation. However,

5



our empirical results suggest that distinguishing between the capital stock and net worth as

state variables is empirically relevant.

This paper is structured as follows. We present a simple example illustrating the key

mechanisms at work in section 2. We then integrate these mechanisms into a dynamic,

quantitative model of firm financing, investment and liquidity management that we describe

in section 3. We introduce our estimation procedure along with empirical results in section 4.

Section 5 concludes. Appendices collect various results related to our computational solution

technique.
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2. A simple example

In this section we present a numerical example that illustrates the key economic tradeoff

between conditional and unconditional liquidity that we embed in a standard dynamic model

of investment and financing. Although this example is highly stylized, it explains both the

basic insight of this work, and how firms can implement their conditional and unconditional

liquidity choices using existing securities, namely lines of credit and cash.

A risk-neutral firm has an initial net worth of 10$ in cash. At this stage, we ignore in-

tertemporal discounting and interest payments. The firm decides how much physical capital

k to purchase today to invest in a project. After the investment possible scenarios can occur

with equal probability. In the bad scenario, the project is not successful and generates zero

profits. In the good scenario, the project generates an intertemporal profit equal to 0.3 k0.85,

and the firm will be able to reinvest an amount kG and obtain additional certain profits equal

to 0.3 k0.85G . When profits are realized, the amounts of physical capital k and kG depreciate

at a rate equal to 10%.

First consider the baseline case summarized in Panel A of Figure 1. The firm can either

borrow an amount b to increase the amount k invested and to be repaid after the uncertainty

about the project prospects resolves, or hoard an amount of cash c that can be used to

reinvest to a larger scale kG in case the good scenario occurs. Borrowing is subject to

collateral constraints. Specifically, the amount the firm can credibly repay is a fraction

θ = 0.5 of the physical capital k the firm can pledge as collateral, that is

b ≤ 0.5 k

In this standard case, the firm can transfer liquidity only unconditionally using cash. The

firm’s goal is to maximize the expected discounted value V of dividends, that is2:

1

2

good scenario︷ ︸︸ ︷
(0.3 k0.85G + 0.9 kG) +

1

2

bad scenario︷ ︸︸ ︷
(0.9 k + c− b)

2We assume, without loss of generality, that dividends are paid only at the end of the project’s life.
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where the initial budget constraint and the budget constraint in the good scenario are re-

spectively

10$ + b = k + c

and

kG = 0.3 k0.85 + 0.9 k + c− b

The optimal firm’s choice is k = 6.47$, b = 0$, c = 3.53$, kG=10.82$, and the resulting

firm’s value is V = 10.68$. In this standard setup, cash is negative debt, that is it is never

optimal for the firm to simultaneously hold cash and debt3. Intuitively, the firm prefers to

reduce the scale of the initial investment k to transfer liquidity unconditionally using cash,

in that this liquidity will be valuable in the good scenario.

Consider instead a second case, summarized in Panel B of Figure 1. The firm now arranges

a state-contingent contract with the lender. The lender is risk-neutral, and agrees to lend an

amount b equal to the expected value of the future repayments in the good scenario bG and

in the bad scenario bB, that is b = 0.5 bG + 0.5 bB. As in the previous case, the collateral

constraints make the debt risk free and limit the amount the firm can credibly repay in each

scenario, that is {
bG ≤ 0.5 k

bB ≤ 0.5 k

In practice, the state-contingent payments bG and bB can be implemented combining standard

securities as standard, state-uncontingent, debt and lines of credit. Suppose the firm initially

has the same initial net worth of 10$ of the previous case. However, net worth is now

composed of 15$ of cash and of an available credit line with an amount already drawn equal

to CL0 = 5$ and to be repaid at the end of the project’s lifetime. For example, the firm

might invest k = 20$, raise b = 5$ today and effectively repay bG = 0$ in the good state

and bB = 10$ is the bad state by arranging a 5$ uncontingent loan, drawing 5$ from the

credit line in the good scenario, and restoring 5$ on the credit line in the bad scenario. In

this way, the firm would effectively transfer liquidity conditionally only to the good state, by

exhausting its debt capacity in the bad state, and keeping slack on its collateral constraint

in the good state.

3See, for example, Strebulaev and Whited (2012).
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For illustration purposes, suppose initially that the firm cannot transfer liquidity uncon-

ditionally using cash at all, that is c is set to zero. The firm’s objective is to maximize

V =
1

2

good scenario︷ ︸︸ ︷
(0.3 k0.85G + 0.9 kG − CLG) +

1

2

bad scenario︷ ︸︸ ︷
(0.9 k − b− CLB)

where CLG and CLB are the credit line drawn amounts to be eventually repaid in the good

and in the bad scenario respectively, that is{
CLG = CL0 + b− bG

CLB = CL0 + b− bB

The initial budget constraint and the budget constraint in the good scenario are respectively

15 $ + b = k

and

kG = 0.3 k0.85 + 0.9 k − bG

The optimal firm’s choice is k = 20$, b = 5$, bG = 0$, bB = 10$, kG=21.83$, and the

resulting firm’s value is V = 10.88$. Notice that the firm’s value is higher than in the previous

case. The firm now uses credit lines to implement conditional liquidity management, and

transfers liquid funds only to the specific states where those resources are needed. In this

case, conditional liquidity allows to boost investment more in good states where profitable

opportunities are available. More generally, conditional liquidity or to have a larger available

buffer to hedge income shortfalls in bad states and avoid engaging in costly asset fire sales.

As a consequence, implementing conditional liquidity management increases firm’s value in

comparison with engaging in unconditional liquidity management.

If conditional liquidity management is more efficient, why do firms use cash to transfer

resources unconditionally at all? The answer is that the amount of liquid funds the firm

can transfer to a specific state is limited by the presence of collateral constraints. In this

example, it may be valuable to give up current investment to have more liquidity that what

the firm can transfer conditionally available in the good state for future investments. To see

this, consider the previous example when the firm is not constrained anymore to hoard zero
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cash, but can transfer liquidity both conditionally and unconditionally. The firm’s objective

is now

V =
1

2

good scenario︷ ︸︸ ︷
(0.3 k0.85G + 0.9 kG − CLG) +

1

2

bad scenario︷ ︸︸ ︷
(0.9 k − b+ c− CLB)

and the budget constraints become

15$ + b = k + c

and

kG = 0.3 k0.85 + 0.9 k − bG + c

The optimal firm’s choice is k = 10.62$, b = 2.66$, bG = 0$, bB = 5.32$, c = 7.03$,

kG=18.83$, and the resulting firm’s value is V = 10.93$. Thus, the firm’s value is larger when

the firm combines conditional and unconditional liquidity management. In sum, a tradeoff

between conditional liquidity (efficient but constrained), and unconditional liquidity (ineffi-

cient but unconstrained) emerges. This tradeoff endogenously generates the co-existence of

cash and debt in firms’ balance sheet, an empirically relevant pattern which is difficult to

rationalize in standard dynamic models of investment and financing4.

[Insert Figure 1 Here]

4An exception is Gamba and Triantis (2008).
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3. Dynamic liquidity model

We now embed liquidity management into a dynamic neoclassical model of corporate invest-

ment and financing. Due to costs of external financing, corporations will benefit from the

availability of liquid funds, either to fund investment opportunities or to cover cash shortfalls.

Firms can provide liquid funds by saving by means of cash, or by drawing on credit lines in

a state-contingent manner. We assume that the availability of credit lines is restricted by

collateral constraints limit firms’ debt capacity.

3.1. Technology and Investment

We consider the problem of a value-maximizing firm in a perfectly competitive environment.

Time is discrete. The operating profit for firm i in period t depends upon the capital stock

ki,t and a shock zi,t, as described by the expression

Π(ki,t, zi,t) = (1− τ)(zi,tk
α
i,t − f) (1)

The production function exhibits decreasing returns to scale with 0 < α < 1. As in Gomes

(2001), we assume there is a per-period fixed production cost f ≥ 0. τ ≥ 0 is the corporate

tax rate. The variable zi,t reflects shocks to demand, input prices, or productivity. zi,t is

assumed to be lognormal and to follow the AR(1) process

log(zi,t+1) = µz(1− ρz) + ρz log(zi,t) + σzϵi,t+1 (2)

At the beginning of each period the firm is allowed to scale its operations by choosing next

period capital stock ki,t+1. This is accomplished through investment ii,t, which is defined by

the standard capital accumulation rule

ki,t+1 = ki,t(1− δ) + ii,t (3)
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where δ is the depreciation rate of capital. Investment is subject to capital adjustment costs.

Following Cooper and Haltiwanger (2006), we include both fixed and convex adjustment cost

components. We parametrize capital adjustment costs with the following functional form:

Ψ(ki,t+1, ki,t) ≡

(
ψ0ki,t +

1

2
ψ

(
ii,t
ki,t

)2

ki,t

)
1{ki,t+1 ̸=(1−δ)ki,t} (4)

where 1{·} is an indicator function, and the parameter ψ0 governs fixed-adjustment costs of

investing and disinvesting. Non-convex costs of adjustment are typically intended to capture

indivisibilities in capital, increasing returns to the installation of new capital, and increasing

returns to retraining and restructuring of production activity. ψ instead drives the convex

component of adjustment costs. Both convex and non-convex costs are proportional to the

initial capital stock ki,t to eliminate any size effect.

3.2. Financing and Liquidity Management

Investment and distributions to shareholders can be financed with three potential sources:

internally generated cash flows, riskfree loans (net of repayments), a credit line, and external

equity. In addition, firms have the option to hoard cash for future investments. Loans

are a uncontingent debt instrument. On the other hand, our view of a credit line that

we embed into our model emphasizes their nature as a state-contingent debt instrument:

corporations can draw upon them conditional on the realization of the state. The entirety

of debt instruments in our model, that is loans plus draws on credit lines, can thus be

represented as state-contingent debt.

Formally, we define (1 + r)bi,t+1(z(i, t+ 1)) to represent the face value to be repaid at

time t + 1 in the state of the world s(t + 1) corresponding to the realization of the shock

z(i, t + 1), where r is the one-period rate of return.5 In other words, the firm is borrowing

from deep-pocket lenders who are willing to lend in all states and dates at the rate of return

r. We provide a decomposition of these payments into a state-contingent loan and a draw

on a credit line below.

5Because our focus in not on endogenous costs of distress, as in Hennessy and Whited (2005) we make the
assumption of riskfree debt in the interest of tractability. Given the high number of decision variables and the
presence of occasionally non-binding constraints and non-convex costs, solving the model is computationally
intensive. The introduction of endogenous default costs would disproportionately increase the computational
burden.
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To simplify notation, we introduce the shorthand bi(st+1) for the decision variables

bi,t+1(z(i, t+ 1)). The value of new debt issues at time t in state st is

Et[bi(st+1)]− (1 + r(1− τ))bi(st) (5)

1+ r(1− τ) is the effective interest rate paid by the firm, after accounting for the tax shield

of debt. Firms are subject to collateral constraints, that impose an upper bound on the

amount of one-period state-contingent debt that a firm can issue. Assuming that future

cash flows are not pledgeable, collateral constraints take the form:

(1 + r(1− τ))bi(st+1) ≤ θ(1− δ)ki,t+1 (6)

Up to a fraction θ of the firm’s tangible capital can be used as collateral for state-contingent

debt at time t + 1 in state s(t + 1). We characterize risk management and the conditional

corporate liquidity policy by defining conditional liquidity hCi (st+1) as the slacks on the

state-contingent collateral contraints:

hCi (st+1) ≡ θ(1− δ)ki,t+1 − (1 + r(1− τ))bi(st+1) (7)

The higher hCi (st+1), the larger the amount of debt capacity the firm is preserving for pos-

sible investment opportunities that may arise conditionally on the realization of the state

st+1. This means that firms can conditionally manage its liquidity, that is they can preserve

their ability to raise debt and support investment in states in which their cash flows are

low, and they have less internally generated resources. There is a clear-cut tradeoff between

conditional liquidity against future income shortfalls, and available funds for current invest-

ment. The amount of raised debt Et[bi(st+1)] in equation (7) is supported by the promised

payments in future states. Therefore, the higher hCi (st+1), the more firms are transferring

resources from today to future states, and the lower Et[bi(st+1)].

Given the tax benefits of debt, we thus view (1 + r(1 − τ))Et[bi(st+1)] as naturally rep-

resenting the state-uncontingent component of debt, or in other words, the loan. State-

contingent draws on the credit line are thus represented by the difference of state-contingent

debt and the loan, so that the debt capacity provides a natural model of the credit limit.
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We provide a formal proof of the representation of state-contingent debt, as defined above,

by means of credit lines and loans in the appendix.

Conditional liquidity is not the only way firms can transfer liquid funds. Firms can hoard

cash and implement unconditional liquidity. Hoarding cash is equivalent to unconditionally

transferring resources from today to all future states, including those in which investment

can be financed by internally generated funds. As for conditional liquidity, there is a tradeoff

between current investment and saving resources for the future. However, is preferable to

unconditional liquidity because it allows to transfer resources to the future states where they

are needed the most. Nevertheless, the presence of capital adjustment costs as in equation (4)

makes cash hoarding optimal for smaller firms that would not otherwise be able to invest to

an economically profitable scale, even if they exhaust their debt capacity. For this reason,

and consistent with empirical evidence, our model predicts that firms can simultaneously

hold debt and cash instead of using cash for repaying debt. This mechanism corroborates

the intuition in Acharya, Almeida, and Campello (2007) that cash is not negative debt.

We denote cash holdings in period t as ci,t. Firms earn the after-tax riskfree interest rate

r(1 − τ) on their cash balances, but also bear costs for holding them. Previous studies

motivate the costs of holding cash by agency costs, and different lending and borrowing

rates. Following DeAngelo, DeAngelo, and Whited (2011), we model these costs through an

”agency parameter” 0 ≤ γ ≤ 1. We interpret γ as the one-period rate to which cash holdings

deteriorate in value. Accordingly, the total hedging for firm i at time t+1 in state s(t+1) is

the amount of resources available from both conditional liquidity and unconditional liquidity,

that is:

hTi (st+1) ≡ hCi (st+1) + (1 + r(1− τ)− γ)ci,t+1 (8)

Finally, the firm can raise external equity. We assume seasoned equity offers are costly, so

that it is never optimal for the firm to simultaneously pay dividends and issue equity. We

assume that equity flotation costs entail a proportional component. We indicate net equity

payout at time t as ei,t. When ei,t < 0 the firm is raising equity, while ei,t ≥ 0 means that

the firm is making distributions to shareholders. Equity issuance costs are given by:

(λ|ei,t|)1{ei,t<0} (9)
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The indicator function denotes that the firm faces these costs only in the region where the

the net payout is negative. Accordingly, distributions to shareholders di,t are the equity

payout net of issuance costs:

di,t = ei,t − (λ|ei,t|)1{ei,t<0} (10)

3.3. The Firm Problem

Managers determine investment, financing, and liquidity management to maximize the wealth

of shareholders. Hence, in period t, they decide over real capital ki,t+1, cash ci,t+1, and state-

contingent debt bi(st+1), for each state st+1. As we discuss in section 3.1, the choice set for

capital is compact. Collateral constraints in equation (6) imply that state contingent debt

variables are bounded between 0 and
θ(1−δ)ki,t+1

1+r(1−τ)
.

Despite the large number of choice variables in the firm problem, the current state can be

more efficiently summarized by introducing realized net worth as a state variable. Realized

net worth at time t in the (realized) state s(t) for firm i is given by:

wi,t ≡ Π(ki,t, zi,t) + ki,t(1− δ)− (1 + r(1− τ))bi(st) + (1 + r(1− τ)− γ)ci,t + τδki,t (11)

As in Rampini and Viswanathan (2012a), net worth measures the amount of resources that

are available to the firm in a certain state. It includes cash flows from current investment,

value of capital net of depreciation, and value of cash holdings, all net of due debt pay-

ments. Intuitively, net worth is the corporate counterpart of household’s wealth (Rampini

and Viswanathan (2012b)). Therefore, net worth is a measure of how constrained a firm is

in terms of available funds to allocate to investment, risk management, and distributions to

shareholders. In our model, the presence of capital adjustment costs implies that the current

stock of capital ki,t is also a relevant state variable. In fact, the knowledge of net worth and

of the choice variables does not suffice to determine distributions to shareholders di,t that

appear in the objective function, because the adjustment costs Ψ(ki,t+1, ki,t) also directly

depend on the current stock of capital. The current state is therefore summarized by the

vector (wi,t, ki,t, zi,t). The set of state variables is compact because ki,t and zi,t are bounded,
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and from equation (11) it is straightforward that net worth lies in a closed and bounded

interval [W
¯
, W̄ ].

Investment, financing, and liquidity management decisions are intimately related. They

should satisfy the following budget identities between sources and uses of funds both at time

t, and for each state at time t+ 1:

wi,t + Et[bi(st+1)] = ei,t + ki,t+1 +Ψ(ki,t+1, ki,t) + ci,t+1 (12a)

wi(st+1) = Π(ki,t+1, zi,t+1) + ki,t+1(1− δ)− (1 + r(1− τ))bi(st+1)+

+ (1 + r(1− τ)− γ)ci,t+1 + τδki,t (12b)

where wi(st+1) denotes net worth at time t+ 1 is state s(t+ 1).

The firm objective function is to maximize the equity value V (ki,t, wi,t, zi,t), that is the

discounted value of distributions to shareholders. The equity value be computed as the

solution to the dynamic programming problem

V (ki,t, wi,t, zi,t) = max

{
0, max

ki,t+1,ci,t+1,bi(st+1)

{
di,t +

1

1 + r
Et[V (ki,t+1, wi,t+1, zi,t+1)]

}}
(13)

subject to the constraints in (3), (4), (6), (10), and (12). In equation (13), V (ki,t+1, wi,t+1, zi,t+1)

denotes the continuation value for equity, which depends on the future state (ki,t+1, wi,t+1, zi,t+1)

and on the values of the choice variables at time t.

3.4. Model Solution

Because of the presence of occasionally non-binding collateral constraints, and because costs

of equity issues and capital adjustment depend on indicator functions, the model cannot be

solved numerically by interior points methods. In principle, the model could be solved on a

discrete grid by value function iteration or policy function iteration. The Bellman operator in

equation (13) is indeed a contraction mapping, in that Blackwell’s sufficient conditions hold

in this framework. Therefore, the fixed point of the functional equation (13) is well-defined.

For a standard formal proof in a similar framework, we refer to Hennessy and Whited (2005).

Unfortunately, there is a computational hurdle that prevents the solution of the model with
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standard techniques. Due to the large number of control variables (capital, cash, and one

debt variable for each future state), value function iteration and policy iteration cannot be

practically implemented. In particular, the maximization step is critical. Determining for

each state the combination of control variables that maximizes the sum of distributions and

the continuation value implies to store and maximize over a vector of nk×nc×nbnz elements,

where nk, nc, nb, and nz are the number of grid points for capital, cash, debt, and the shock.

As in Rust (1997), this problem is plagued by a curse of dimensionality, since the amount

of computer memory and CPU time required increases exponentially with the number of

control variables. As a consequence, even for modest values for nz, such a vector becomes

too large even to be stored.

We overcome this difficulty by exploiting the linear programming representation of dy-

namic programming problems with infinite horizon (Ross (1983)), as in Trick and Zin (1993),

and Trick and Zin (1997). This technique has not been historically widely used. Despite it

often allows to achieve significant speed gains over iterative methods, it requires in turn to

store huge matrices and arrays that make it impractical for complex enough models. Specifi-

cally, we extend the constraint generation algorithm developed by Trick and Zin (1993), and

we rely on a separation oracle, an auxiliary mixed integer programming problem, to avoid

dealing with large vectors at all. As in Trick and Zin (1993), the constrained generation

algorithm converges to the fixed point faster than traditional iterative methods. Moreover,

the separation oracle allows to efficiently implement the maximization step because of a

remarkable feature of our model, namely the relatively small number of state variables in

spite of the large number of control variables. With this method, we manage to solve the

model in a reasonable time (around three minutes on an eight-core workstation). Appendix

B provides details on the solution method.

17



3.5. Optimal Policies

3.5.1. Hedging Formulation

Lemma 1 (Hedging formulation)

The constrained optimization problem (13) is equivalent to:

V (ki,t, wi,t, zi,t) = max

{
0, max

ki,t+1,hU
i,t+1,h

C
i (s(t+1))

{
ei,t − Λ(ei,t) +

1

1 + r
Et[V (ki,t+1, wi,t+1, zi,t+1)]

}}
(14)

s.t.

wi,t ≥ ei,t + Et

[
hCi (s(t+ 1))

1 + r(1− τ)

]
+

hUi,t+1

1 + r(1− τ)− γ
+ Pki,t+1 +Ψ(ki,t, ki,t+1) (15a)

wi(s(t+ 1)) ≤ (1− τ)Π(ki,t+1, zi,t+1) + (1− θ)(1− δ)ki,t+1 + τδki,t+1 + hTi (s(t+ 1)) ∀s(t+ 1)

(15b)

hCi (s(t+ 1)) ≥ 0 ∀s(t+ 1)

(15c)

hCi (s(t+ 1)) ≤ θ(1− δ)ki,t+1 ∀s(t+ 1)

(15d)

hUi,t+1 ≥ 0 (15e)

where P ≡ 1− θ(1−δ)
1+r(1−τ)

is the fraction of each unit of capital paid down by the firm at time

t, hCi (s(t + 1)) ≡ θ(1 − δ)ki,t+1 − (1 + r(1 − τ))bi(s(t + 1)) is conditional hedging for state

s(t+1), hUi (s(t+1)) ≡ hUi,t+1 = (1+ r(1− τ)−γ)ci,t+1 is unconditional hedging for all states

at time t+ 1, and hTi (s(t+ 1)) ≡ hCi (s(t+ 1)) + hUi,t+1 is total hedging.

The hedging formulation is particularly instructive because it emphasizes the role of dynamic

liquidity management. The problem (14) can be equivalently interpreted as a problem where

firms pledge all their collateral, and transfer resources (net worth) from t to t+ 1 both con-

ditionally, to specific states, and unconditionally, to all future states. Regarding conditional

liquidity, firms decide to purchase
hC
i (s(t+1))

1+r(1−τ)
Arrow-Debreu securities at time t in order to

obtain a payoff of hCi (s(t + 1)) is state s(t + 1) next period. Constraints (15c) and (15d)

impose bounds on the amount of conditional hedging the firm can implement. The collat-
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eral constraint imposes a lower bound, that corresponds to exhausting all debt capacity.

Constraint (15d) states that the maximum amount of liquid funds that a firm can transfer

to state s(t + 1) corresponds to its debt capacity, that is to the firm having zero debt due

in state s(t + 1). Unconditional hedging instead consists of hoarding an amount of cash
hU
i,t+1

1+r(1−τ)−γ
, in order to get to obtain a payoff hUi,t+1 in all future states at time t + 1. The

hedging formulation provides a preliminary intuition on the different nature of conditional

and unconditional liquidity management. Equations (15a) and (15b) hint that transferring

liquid funds conditionally is more efficient than doing so unconditionally if the firm needs

to transfer resources only to some states (for example to bad states). Transferring funds to

future states involves subtracting resources available to be distributed to shareholders ei,t

and to be paid down to make investment possible Pki,t+1 + Ψ(ki,t, ki,t+1). If, for example,

a firms needs to transfer an amount M only to the specific state s(t + 1) (for example the

lowest state), the amount of resources it needs at time t is π(s(t), s(t + 1)) M
1+r(1−τ)

, where

0 ≤ π(s(t), s(t+1)) < 1 is the transition probability from state s(t) to state s(t+1). On the

contrary, implementing unconditional hedging for the same purpose would require to sub-

tract M
1+r(1−τ)−γ

. So, why should firms engage in unconditional liquidity management at all?

Constraint (15d) states that the maximum amount of liquid funds that a firm can transfer

conditionally is bounded by its total debt capacity θ(1− δ)ki,t+1. Therefore, whenever it is

optimal for the firm to have total hedging greater than this amount, hoarding cash becomes

necessary. As a result, endogenously, cash is not negative debt, and consistent with empirical

evidence we can observe firms simultaneously holding cash and debt.6 As the quantitative

analysis in section 4 emphasizes, capital adjustment costs Ψ(ki,t, ki,t+1) play an important

role, both qualitatively and quantitatively. Specifically, they allow to differentiate between

firms that are constrained in terms of net worth, and small firms, and rationalize patterns

that are observed in the data. Equation (15a) points up that different current and future

investment needs yield to different needs of transferring net worth to future states. This

creates sharp differences in corporate liquidity policy of large and small firms. Suppose,

for example, that adjustment costs are quadratic in the investment-to-capital ratio. With

6As DeAngelo, DeAngelo, and Whited (2011) discuss, in frameworks in which firms never optimally hold
cash and debt together, it is not necessary to model them using two separate positive control variables. In
our model, letting negative debt being cash by relaxing constraint (15d) would not only prevent firms from
simultaneously holding cash and debt, but also assume that state-contingent cash securities exist, which is
unrealistic.
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decreasing returns to scale, small firms with high investment needs would be better off in

spreading investment over multiple periods to avoid incurring disproportionately high ad-

justment costs. Therefore, they may find optimal to hedge more, by saving debt capacity

in a state contingent and possibly by hoarding cash. This creates a dependence between

investment and liquidity needs, and, as a consequence, between size and risk management.

3.5.2. Optimal Policy

Proposition 1 (Optimality conditions)

Denote by λw,
π(s(t),s(t+1))λw

s(t+1)

1+r
,

π(s(t),s(t+1))λC
s(t+1)

1+r
,

π(s(t),s(t+1))λ
C
s(t+1)

1+r
, and λU the multipliers

on constraints (15a), (15b), (15c), (15d), and (15e) respectively, where π(s(t), s(t+ 1))

is the Markovian transition probability from state s(t) to state s(t + 1). Assume that the

equity cost function Λ(ei,t) is differentiable in e(i, t).7 Then, the first order conditions for

the hedging formulation (14) can be expressed as follows:

λw = 1− ∂Λ(ei,t)

∂ei,t
(16a)

λw(P +
∂Ψ(ki,t, ki,t+1)

∂ki,t+1

) =
1

1 + r
Et[λ

w
s(t+1)V

k(s(t+ 1)) + λ
C

s(t+1)H
k] (16b)

λw
1

1 + r(1− τ)− γ
=

1

1 + r
Et[λ

w
s(t+1)] + λU (16c)

1

1 + r(1− τ)
λw = [(λCs(t+1) − λ

C

s(t+1)) + λws(t+1)]
1

1 + r
∀s(t+ 1) (16d)

where

V k(s(t+ 1)) = (1− τ)
∂Π(ki,t+1, zi,t+1)

∂ki,t+1

+ τδ + (1− θ)(1− δ) ∀s(t+ 1) (17a)

Hk = θ(1− δ) (17b)

7In our model, we choose a functional form for equity flotation costs with a fixed and a proportional
component, which is non-differentiable for e(i, t) = 0 (its derivative at zero exists only in a distributional
sense). This assumption is not critical for our qualitative analysis. Alternatively, one can approximate Λ(ei,t)
with 0.5(1 + tanh(Ne(i, t))), with N large enough, in the neighborhood of zero. A similar argument applies
to the adjustment cost function Ψ(ki,t, ki,t+1) in case fixed costs are included.
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The envelope conditions imply:

∂V (wi,t, zi,t)

∂wi,t

= λw (18a)

∂V (wi,t+1, zi,t+1)

∂wi,t+1

= λws(t+1) ∀s(t+ 1) (18b)

Moreover, the investment Euler equation is:

P +
∂Ψ(ki,t, ki,t+1)

∂ki,t+1

= Et[M
w(s(t), s(t+ 1))V k(s(t+ 1))] + Et[M

h(s(t), s(t+ 1))Hk] (19)

whereMw(s(t), s(t+1)) ≡ 1
1+r

λw
s(t+1)

λw andMh(s(t), s(t+1)) ≡ 1
1+r

λ
C
s(t+1)

λw are stochastic discount

factors. In addition:

Mw(s(t), s(t+ 1)) =
1

1 + r(1− τ)
− 1

1 + r

λCs(t+1) + λ
C

s(t+1)

λw
(20)

The optimality conditions illustrate how investment, financing, liquidity and payout poli-

cies are intimately related, and shed light on the qualitative mechanism that drive firm’s

decisions. Moreover, they allow to understand the rationale for liquidity management, and

which future states firms optimally hedge. Since the problem has no closed-form solution,

the following analysis relies on the economic interpretation of the Lagrange multipliers as

shadow values.

Equation (16b) relates the costs and benefits of investing an additional unit of real capital

at time t+1. The left hand side represent the marginal cost of investing. An additional unit

of capital requires that the firm puts P money down and pays capital adjustment costs. The

cost of doing so is (P +
∂Ψ(ki,t,ki,t+1)

∂ki,t+1
)λw. The multiplier λw accounts for the shadow loss in

firm value of relaxing the resource constraint (15a) at time t (resource constraints are always

binding). The right hand side is the marginal benefit of an additional unit of investment,

discounted back to time t by the shareholders’ discount factor 1
1+r

. The benefits correspond

to the two terms on the right hand side. First, the expected value of the additional investment

V k(s(t + 1)) across all future possible states, that consists of marginal changes in profits,

of tax benefits, and of the liquidation value of the share of capital not pledged to lenders.

Second, the expected increase in debt capacity available for conditional hedging Hk in all
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states. The multipliers λws(t+1) and λ
C

s(t+1) instead account respectively for the additional

future net worth (constraint (15b)), and for the additional debt capacity (constraint (15d))

available to transfer conditional liquidity to state s(t + 1) because of the additional unit

capital installed (in case this constraint is binding).

Marginal cost of investment︷ ︸︸ ︷
λw(P +

∂Ψ(ki,t, ki,t+1)

∂ki,t+1

) =

Marginal benefit of investment︷ ︸︸ ︷
1

1 + r
Et[λ

w
s(t+1)V

k(s(t+ 1))︸ ︷︷ ︸
Net worth

+ λ
C

s(t+1)H
k]︸ ︷︷ ︸

Debt capacity

(21)

Equation (16c) describes the unconditional liquidity policy of the firm. Similar to equa-

tion (16b), the left-hand side λw 1
1+r(1−τ)−γ

is the cost of allocating a unit of current net

worth to cash hoarding, in order to transfer one unit of cash to all future states at t + 1.

The right-hand side is the value of this additional unit of net worth available in all states
1

1+r
Et[λ

w
s(t+1)]. In addition, the term λU accounts for the possibility that the constraint on

positive cash is binding.8

Marginal cost of unconditional liquidity︷ ︸︸ ︷
λw

1

1 + r(1− τ)− γ
=

Marginal benefit of unconditional liquidity︷ ︸︸ ︷
1

1 + r
Et[λ

w
s(t+1)]︸ ︷︷ ︸

Net worth

+ λU︸︷︷︸
Positive cash holdings

(22)

Equation (16d) describes the conditional liquidity policy of the firm. As for unconditional

liquidity management, the marginal cost of allocating one unit of net worth to risk man-

agement is λw 1
1+r(1−τ)

(the agency parameter γ > 0 makes it more costly for unconditional

hedging). It is however more interesting to examine the right-hand side, and to compare

it to the optimality conditions for unconditional liquidity management in equation (16c).

As for cash hoarding, the benefits are discounted to time t through the manager’s discount

factor 1
1+r

. However, the value of additional net worth potentially available for the state

s(t + 1) is λws(t+1). In equation equation (16c), the value of the net worth transferred to

8This term is more meaningful in case we interpret the first-order condition on unconditional hedging for
a reduction of one unit. In this case, the marginal benefit is the additional amount λw 1

1+r(1−τ)−γ available

at time t for investment, distributions, and conditional hedging, and the marginal cost is the sum of the
value of one less unit of net worth available in all states, and of the shadow value of being able to reduce
further cash if constraint (15e) binds.
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state s(t + 1) is only π(s(t), s(t + 1))λws(t+1).
9 This supports the statement in section 3.5.1

that conditional liquidity management is preferable to unconditional liquidity management

because with the same amount of net worth at time t it allows to transfer more resources

to a specific state s(t + 1). The term λCs(t+1) − λ
C

s(t+1) instead illustrates why firms may

be interested in managing its liquidity both conditionally and unconditionally at the same

time. Specifically, since in our model conditional hedging can be implemented only saving

debt capacity in a state contingent way, the amount of conditional liquidity is limited by

the constraints (15c) and (15d). The term λCs(t+1) accounts for the presence of occasionally

binding state-contingent collateral constraints, that may become active and limit the amount

of state-contingent debt that a firm can hold given the amount of pledgeable capital ki,t+1.

Symmetrically, the multiplier λ
C

s(t+1) is different from zero in case the firm would like to

transfer more resources conditionally, but its amount is limited because the firm has already

zero debt due in state s(t + 1). The limited amount of implementable conditional hedging

through liquidity management implies that firms can simultaneously hold cash and debt. To

see this, suppose that the firm is interested in hedging a specific state, such as the lowest

state s, as much as possible. Ceteris paribus, the maximum amount of resources that the

firm can transfer to s corresponds to exhausting all debt capacity in all states except s. This

implies that no debt is due in state s. Moreover, the firm can transfer the net worth raised

by the state-contingent debt issues in all states excluding s, to all future states, including s,

by hoarding cash. As a result, the firm would hold cash and debt together.

Marginal cost of conditional hedging︷ ︸︸ ︷
1

1 + r(1− τ)
λw =

Marginal benefit of conditional liquidity︷ ︸︸ ︷
[ (λCs(t+1) − λ

C

s(t+1))︸ ︷︷ ︸
Limited conditional liquidity

+ λws(t+1)︸ ︷︷ ︸
Net worth

]
1

1 + r
∀s(t+ 1)

(23)

The payout policy instead balances the marginal cost of allocating a unit of net worth

to dividend distributions or, vice versa, to issue equity to increment net worth by one unit.

9To better see this, notice that the expectation in equation (16c) is
∑S

s=1 π(s(t), s)λ
w
s , where S is the

total number of states.
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In case of equity issues, there is not a one-to-one correspondence between raised equity and

increased net worth because of equity flotation costs.

Marginal benefit of issuing equity︷︸︸︷
λw︸︷︷︸

Marginal cost of paying dividends

=

Marginal cost of issuing equity︷ ︸︸ ︷
1︸︷︷︸

Marginal benefit of paying dividends

−∂Λ(ei,t)
∂e

(24)

The Euler condition (19) clarifies the important matter of the firm’s rationale for liq-

uidity management, and of which states it is optimal to hedge. The Euler equation can be

interpreted as a pricing relationship. The left-hand side can be seen as the valuation of the

paid down share P +
∂Ψ(ki,t,ki,t+1)

∂ki,t+1
per unit of capital. The right-hand hand side shows that

this value is supported by two terms. The term Et[M
w(s(t), s(t + 1))V k(s(t + 1))] is the

stochastically discounted valuation of the benefits V k(s(t + 1)) of investing an additional

unit. Mw(s(t), s(t + 1)) is the firm’s stochastic discount factor, and is equal to 1
1+r

λw
s(t+1)

λw .

The concavity properties of the value function imply that the marginal value of a certain

level of net worth is higher in bad times, so that the stochastic discount factor puts more

weight on bad states through the Lagrange multipliers. Indeed, envelope conditions (18a)

and (18b) show how Langrange multipliers are related to the shape of the value function,

so that λws(t+1) is decreasing in wi(s(t + 1)). In a valuation perspective, since a larger share

of P is supported by those states, the firm behaves as if it were risk-averse. This provides

incentives to implement liquidity management by preserving net worth for investments and

distributions for bad future states, where internally generated cash flows and future real-

ized net worth are, other conditions equal, lower. vice versa, the payoff from investments

V k(s(t + 1)) suggests that the firm may want to hedge good states as well. If the law of

motion of shocks to capital productivity zi,t is persistent enough, the payoff of investing in

good (bad) times is higher (lower) because the firm expects a sequence of good (bad) shock

realizations. The firm will therefore save resources for good states and boost investment in

good times. If this is the case, the marginal value of net worth is not necessarily lower in bad

states anymore. An instructive benchmark case is the case with independent productivity

shocks. In such a scenario, the expected productivity of capital
∂Π(ki,t+1,zi,t+1)

∂ki,t+1
is independent

of the current state. As a consequence, firms only hedge bad states because of the properties

of the discount factor Mw(s(t), s(t + 1)). In practice, however, the productivity process in

quite persistent. Therefore, the matter of whether firms hedge good or bad states (or both),
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and how much, is a purely quantitative question. Also, it is a quantitative question whether

firms hedge at all. As in Rampini and Viswanathan (2012a), firms that are particularly con-

strained may not hedge, and prefer to allocate their scarce resources to current investment

and distributions. The second term on the right-hand side instead Hk reflects that capital is

valuable also because it serves as collateral, it increases debt capacity and, as a consequence,

the amount of conditional liquidity management implementable in all states. The stochastic

discount factor Mh(s(t), s(t + 1)) depends on the multiplier λ
C

s(t+1). Therefore, the value

of increased debt capacity is higher is states where firms hold no debt because conditional

liquidity is more valuable.

Value of paid-down capital︷ ︸︸ ︷
P +

∂Ψ(ki,t, ki,t+1)

∂ki,t+1

=

Discounted investment profits︷ ︸︸ ︷
Et[M

w(s(t), s(t+ 1))V k(s(t+ 1))]+

Debt capacity︷ ︸︸ ︷
Et[M

h(s(t), s(t+ 1))Hk] (25)

Finally, equation (20) explicitly relates the stochastic discount factor Mw(s(t), s(t+ 1)),

which appears in the investment Euler equation, to the hedging policy of the firm. The

multipliers λCs(t+1), and λ
C

s(t+1) differ from zero respectively when the firm exhausts all its debt

capacity in state s(t+1), and when the firm has zero debt in state s(t+1). These multipliers

enter the Euler equation because of market incompleteness. Given the stochastic nature of

the model, firms anticipate that collateral and debt positivity constraints may bind in the

future, and this affect their investment and liquidity management policy. By transferring

liquid funds conditionally, the firm can therefore influence the relative importance of different

states for determining the value of paid-down capital. For example, if a company borrows

constrained in the low state s and saves all its debt capacity for future investment in the

high state s, the stochastic discount factor puts more weight on the high state, namely
1

1+r(1−τ)
+ 1

1+r
λ
C
s

λw versus 1
1+r(1−τ)

− 1
1+r

λC
s

λw .

Mw(s(t), s(t+ 1)) =
1

1 + r(1− τ)︸ ︷︷ ︸
Unconditional component

− 1

1 + r

Debt capacity︷ ︸︸ ︷
λCs(t+1) +

Positive debt︷ ︸︸ ︷
λ
C

s(t+1)

λw︸ ︷︷ ︸
State-contingent component

(26)
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3.5.3. Numerical Illustration

We provide numerical examples to illustrate the analytical analysis in section 3.5.2, and to

better understand the qualitative importance of different types of capital adjustment costs

for corporate investment and liquidity policy. In the interest of clarity, in all the examples

we solve the model with three possible states and in absence of equity issues, and report the

policy for the middle state. The details of the parametrizations are reported in the captions

of figures 2 to 5.

Figure 2 refers to the case with no adjustment costs and independent investment oppor-

tunities. Specifically, Markovian transition probabilities are uniform (equal to one third for

each pair of states), so that the expected capital productivity is the same for every state at

time t. Panels A and B depict investment and payout as a function of current net worth.

Similar to Rampini and Viswanathan (2012a), there exist a threshold of net worth below

which investment is increasing, and dividends are zero. Above the threshold investment is

constant and dividends are linear. Panel C shows that the value function is weakly concave

in net worth. This is an important property, because the firm’s stochastic discount factor in

equation (25) is equal to 1
1+r

λw
s(t+1)

λw . As a consequence, the firm behaves as if risk averse with

respect to net worth. Such a behavior is clearly visible in panel F. As we pointed out in the

previous section, with independent productivity, the firm implements downstate liquidity

management. In this example, it saves all its debt capacity for the low state for almost all

levels of net worth. The dashed line (conditional hedging for the low state), and the thin

line (available debt capacity) are indeed very close. The amount of liquidity decreases for

the middle states (solid line), and is equal to zero for the high state (dashed-dotted line).

Panel E shows the cash policy of the firm. When hedging needs exceed the available debt

capacity, that is the amount of implementable conditional liquidity, and the firm is uncon-

strained enough in terms of net worth, it implements unconditional liquidity too. This way,

additional resources are transferred to the low state. As a consequence, as panel D depicts,

cash is not negative debt, and it is optimal for the firm to simultaneously hold them.

[Insert Figure 2 Here]
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Figure 3 removes the assumption of independent investment opportunities, and introduces

some persistence. In particular, the firm has now a probability of one half to stay in the

current state, and of one quarter to move to another state. The policy is generally similar

to that in figure 2, except for conditional liquidity management. The dashed-dotted line in

Panel F is no longer equal to zero, meaning that the firm hedges upstate as well. Intuitively,

with independent investment opportunities, the firm has no incentive to hedge the state

where the marginal value of future net worth is lower. However, as equation (25) states, if

there is a high probability that periods of high profits are followed by periods of high profits,

expected future productivity is higher in good states. Therefore, the firm may rationally

save resources for future investments in states where investment opportunities are likely to

remain good.

[Insert Figure 3 Here]

Figures 4 to 5 emphasize the importance of capital adjustment costs to disentangle net

worth from capital. We consider, one at a time, the types of adjustment costs in the gen-

eral functional form (4), namely convex investment costs and fixed investment costs. This

approach allows to see how the firm implements conditional and unconditional liquidity

management for investment and disinvestment motives. Moreover, we can assess how the in-

vestment, liquidity, and risk management policy differs if we consider either fixed or smooth

costs.

Figure 4 illustrates investment and liquidity management in presence of smooth invest-

ment costs. Panels A to C show how, for some values of the current capital stock, the

policy is similar to the case with no adjustment costs. Conditional on capital, unconstrained

firms transfer more liquidity, both conditionally and unconditionally. However, Panels D

to F depict how the level of current capital now influences investment and hedging deci-

sions, conditional on net worth. Panel D reports the optimal investment-to-capital ratio as

a function of firm’s size. Because of decreasing returns to scale in the production function,

capital installment is relatively more profitable for small firms, which have higher investment

needs. Because adjustment costs are quadratically increasing in the investment-to-capital

ratio, smaller firms cannot instantaneously adjust to the desired capital level. Partial adjust-

ment is hence optimal, and small firms transfer net worth for (costly) investment to future
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states, both conditionally (panel F), and unconditionally (panel E). This behavior results in

small firms having more cash.

[Insert Figure 4 Here]

Figure 5 shows instead the case of liquidity management for investment in presence of

fixed capital adjustment costs. As panel D clearly shows, the firm has a standard (S,s) policy

as a function of current capital.10 In the figure, k∗ denotes the ”frictionless” level of capital

in absence of investment adjustment costs, defined as in Caballero, Engel, and Haltiwanger

(1995), and Caballero and Engel (1999). Intuitively, the more the firm deviates from the

”target” level, the higher the cost it bears. As a consequence, when the disequilibrium

|ki,t − k∗| is large, it is optimal to pay the fixed cost and to re-adjust the capital level to

k∗. This policy determines an inaction region bounded by the low barrier kD, and by the

high barrier kU . In this region, optimal investment is zero. Panels E and F emphasize how

firms transfers conditional and unconditional liquid funds precisely in the inaction region.

Intuitively, since they are not currently investing, they transfer some net worth to future

states, instead of paying it off as dividends.

10For an exhaustive treatment of models with fixed costs we refer to Stokey (2008).
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4. Structural estimation

We now proceed to formally estimate the parameters of the model by means of a simulation-

based estimator, namely the simulated method of moments (SMM). We start by describing

our data in some more detail. We present then the estimation method and provide a discus-

sion on identification. Finally, we present our results.

4.1. Data

Estimating the dynamic corporate liquidity model requires merging data from different

sources. In particular, we obtain financial statements data from Compustat annual files and

credit lines data from Capital IQ. We remove all regulated (SIC 4900-4999) and financial

firms (SIC 6000-6999). Observations with missing total assets, market value, gross capital

stock, cash, long-term debt, debt in current liabilities, credit line limit, drawn portion of the

credit line and SIC code are excluded from the final sample. We obtain a panel dataset with

19,796 observations for 3424 firms for the period of 2002 to 2011 at the annual frequency.

4.2. Estimation

We estimate most of the model parameters using simulated method of moments (SMM).

However, we estimate some of the model parameters separately. For example, we set the

risk-free interest rate, r, equal the average over the sample period of the one-year Treasury

rate. We set the depreciation of capital, δ, equal to 12%, which is the average depreciation

rate in the Compustat dataset. Finally, we set the agency cost of holding cash, γ, equal to

0.77%, which corresponds to the estimate from DeAngelo, DeAngelo, and Whited (2011).

We then estimate 8 parameters using the simulated method of moments: the curvature

of the profit function, α; the fixed production cost, f ; the serial correlation of ln(z), ρz; the

standard deviation of the innovation of ln(z), σz; the fixed capital adjustment cost, ψ0; the

variable adjustment cost, ψ; the debt capacity, θ; and is the equity flotation cost, λ.
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The simulation method of moments, although computationally intensive, is conceptually

simple. We solve the model using numerical techniques and generate simulated data. Then,

we compute interesting moments using both the simulated and the observed data. The SMM

estimator selects the parameters such that the distance between the simulated and the actual

data is minimized. We next describe the estimation procedure in some more detail.

One important aspect of the SMM estimation is the choice of weighting matrix. A natural

candidate for this choice is the identity matrix. While intuitive, this choice comes with a

significant drawback. Indeed, the identity matrix allocates more weight to the moments that

are larger in absolute value. This property does not have any valid economic interpretation.

As a consequence, we choose to use the optimal weighting matrix that is the inverse of the

covariance matrix of the moments. Intuitively, this method allocates more weight on the

moments that are measured with greater precision. To compute the covariance matrix of the

moments, we follow the influence function approach of Ericson and Whited (2000).

Finally, one last aspect of the estimation relates to unobserved heterogeneity. Indeed,

our model generates predictions for a representative firm. However, for the estimation, we

use data from Compustat and Capital IQ, i.e. a panel data set. To have consistency between

the simulated and the observed data, we need to either add heterogeneity to the simulated

data or remove heterogeneity from the observed data. We select the second approach. To do

so, we use firm and year fixed effects when we estimate variances, covariances, and regression

coefficients.

4.3. Identification

Before proceeding with the estimation of the model, it is important to understand how we

can identify the model parameters in the data. A sufficient condition for identification is

a one-to-one mapping between the structural parameters and a set of data moments of the

same dimension. It is however difficult to obtain such a closed-form mapping in any economic

model. As a consequence, to achieve identification, we select a set of moments such that

every estimated parameter has a differential impact on this set of moments. Heuristically,

a moment h is informative about an unknown parameter β if that moment is sensitive

to changes in the parameter and the sensitivity differs across parameters. Formally, local
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identification requires the Jacobian determinant, det(∂h/∂β), to be nonzero. To aid in

the intuition of the identification of the model parameters, we compute elasticities of the

model-implied moments with respect to the parameters, (∂h/∂β)/(β/h). Inspection of these

elasticities reveals that condition det(∂h/∂β) ̸= 0 holds and that we can separately identify

the parameters of the model.

We further proceed to describing the details of the identification and the choice of mo-

ments. In particular select 18 moments that relate to the distributions of cash, credit lines,

leverage, operating income, investment, equity issance, and Tobin’s q. Average profitability

primarily identifies the curvature of the profit function α. Next, the variance and autocor-

relation of profits directly identify the parameters σz and ρz. The fixed and variable capital

adjustment costs directly affect the pace and size of investment changes and are identified

by the variance and autocorrelation of investment. The fixed production cost f increases the

need for liquidity management and is identified by average cash and undrawn debt capacity.

Average credit line limit helps identify the debt capacity parameter θ. Higher θ implies

higher debt capacity and thus a larger limit on the credit line. Average equity issuance and

cash help identify equity flotation costs. Finally, all parameters affect Tobin’s q.

4.4. Results

Table 1 presents the main results of the structural estimation. Panel A reports simulated and

actual moments. Panel B reports structural parameter estimates and their corresponding

standard errors.

The most important result in Panel A is that our dynamic liquidity model fits the data

reasonably well. The model performs well in matching average cash, credit line limit, invest-

ment, operating income, and Tobin’s q. The model predicts a higher average undrawn credit.

While the model performs well at matching operating income variance, it overestimates vari-

ances of cash and undrawn credit. The simulated variances of leverage and investment are

in the same order of magnitude as the actual ones. The simulated autocorrelations of most

of the moments match their empirical counterparts reasonably well.
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Panel B shows that all model parameters are statistically significant. In addition, the

estimates of the technological and investment parameters are in line with those reported in

the previous literature. The debt capacity parameter θ is estimated at 56%. This implies

that the average firm can use up to half of its assets as collateral to seek financing.

4.5. Empirical Implications

In this section, we examine some empirical implications of our model for corporate liquidity.

Subsection 4.5.1 discusses the relationship between asset tangibility and liquidity. Subsec-

tion 4.5.2 considers the different roles of the state variables of the model, namely firms’ net

worth, capital, and profitability as determinants of liquidity. Subsection 4.5.3 presents styl-

ized evidence related to the joint dynamic behavior of corporate liquidity, investment, and

external financing.

4.5.1. Tangibility and Corporate Liquidity

In our framework, as in Albuquerque and Hopenhayn (2004), and in the Arrow-Debreu

Limited Enforcement economies in Rampini and Viswanathan (2010) and Rampini and

Viswanathan (2013), conditional liquidity is limited by a fraction of the physical capital

that the firm can pledge as collateral. Thus, ceteris paribus, firms with more tangible assets

to pledge will be able to fulfill their liquidity needs primarily conditionally. Table 2 provides

suggestive stylized empirical evidence of the aforementioned economic tradeoff. The table

reports panel regressions of total liquidity, defined as the ratio of total liquidity (cash plus

undrawn credit) to total assets (Panel A), of the fraction of conditional-to-total liquidity

(Panel B), and of the fraction of unconditional-to-total liquidity (Panel C), on two proxies of

tangibility (Berger, Ofek, and Swary (1996), and fixed-to-total-asset ratio), and two proxies

of intangibility (the fraction of organization capital measured with the perpetual inventory

method applied to SG&A expenses, and the fraction of knowledge capital measured with the

perpetual inventory method applied to R&D expenses) employed in the empirical literature.

The results in Panels B and C emphasize that firms with more pledgeable assets fulfill their

liquidity needs mostly conditionally. The results in Panel A suggest instead that firms with

more intangible assets tend to transfer more liquidity in total, but mostly unconditionally
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using cash. This result is consistent with Falato, Kadyrzhanova, and Sim (2013), who find

that high-growth firms with a large fraction of intangible assets hold disproportionately more

cash.

[Insert Table 2 Here]

4.5.2. Determinants of Corporate Liquidity

The panel regressions in Table 3 report suggestive evidence on how the state variables of

our model, namely net worth, capital, and profitability, affect observed corporate liquidity

choices, in terms of both amount transferred and of mix between conditional and uncon-

ditional liquidity. The dependent variable in columns (1) and (2) is the total amount of

liquidity firms transfer both conditionally using undrawn credit and unconditionally using

cash (scaled by total assets). The dependent variable in columns (3) and (4) is the fraction of

corporate liquidity that firms choose to preserve conditionally. The specifications in columns

(1) and (3) are based on the sample we describe in Section4.1. The specifications in columns

(2) and (4) are averages across 100 simulated panels of 1000 firms for 20 years under the

baseline model estimation in Table 1.

The regressions in columns (1) and (2) show that the total amount of corporate liquidity

is positively related to net worth and negatively to capital.11 In our model, as in Rampini

and Viswanathan (2013), there is an intertemporal tradeoff between net worth allocated to

current investment and future liquidity. As we discuss in Section 3.5, the marginal value of

current net worth is lower for unconstrained firms. As a result, they allocate more resources to

liquidity management. On the contrary, consistent with the predictions in Froot, Scharfstein,

and Stein (1993), small firms have more growth options and larger total liquidity needs than

large firms conditional on their level of net worth. Finally, more profitable firms need to

transfer less liquidity since they internally generate resources for future needs.

The estimates in columns (3) and (4) reflect the economic tradeoff between conditional

and unconditional liquidity in our model. Firms with more physical capital have more

collateral to pledge, and prefer to use efficient conditional liquidity to fulfill their needs for

11The magnitude of the coefficients in the model and in the data are not directly comparable since the
numerical values of net worth and capital in the model depend on the choice of the numerical grid.
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future resources. In practice, the slack they keep on their lines of credit is a large part

of their total liquidity. Given their capital stock, unconstrained firms have a lower cost

on transferring liquidity, and they do so hoarding cash. Profitability does not appear to

significantly affect firms’ liquidity mix.

Overall, the evidence in Table 3 highlights the importance of distinguishing between

small (low capital) and constrained (low net worth) firms to interpret corporate liquidity

choices. While net worth and capital are positively correlated and are occasionally both

used as proxies of the severity of firms’ financial constraints, they play a different role as

determinants of corporate liquidity. Our model emphasizes their distinct function, in that

net worth and capital are separate endogenous state variables.

[Insert Table 3 Here]

4.5.3. Co-Movements between Corporate Liquidity, Investment, and External

Financing

Table 4 reports the average across firms of time-series correlations among variables that

describe firms’ investment, financing, and liquidity policies. The first column considers the

sample we describe in Section4.1, while the second column refers to a simulated sample of

1000 firms for 100 years under the estimated parameter values in Table 1. These correlations

not only capture the dynamic nature of the model by quantifying co-movements among

relevant variables, but also serve, along with the regressions in Table 3, as an out-of-sample

test of the model.

We consider correlations among several variables that describe firms’ sources and uses

of funds, namely internally generated operating income, credit line draws, equity issuances,

changes in cash balances, and investment expenses. Table 4 shows that the model is broadly

consistent with co-movements observed in our sample. For example, equity issuances are

positively correlated not only to investment expenses (0.110 in the data, 0.102 in the model)

but also to changes in cash (0.070 in the data, 0.114 in the model). This suggests that firms

use a part of the proceeds of equity issuances to replenish their cash reserves. In addition,

firms appear to issue equity when internally generated profits are low and may not suffice
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to cover their liquidity needs. Indeed, the two variables are negatively correlated, with a

coefficient of -0.265 in the data, and -0.223 in the model.

[Insert Table 4 Here]
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5. Conclusion

In the presence of capital market imperfections expectations of future investment opportuni-

ties or cash shortfalls provide a rationale for dynamic liquidity management. We develop and

estimate a quantitative model to examine the cross-sectional and time-series determinants of

corporations’ liquidity management. The result is a quantitative theory of optimal liquidity

management based on the trade-off between conditional liquidity subject to collateral con-

straints and unconditional, unconstrained liquidity. To estimate our model structurally by

means of the simulated method of moments (SMM), we develop a novel and efficient approach

to solving high-dimensional dynamic programming problems based on linear programming.

Our model identifies unconditional liquidity management using cash and conditional liq-

uidity management by means of drawing on credit lines as important instruments of cor-

porate policy. In particular, our model predicts substantial cross-sectional variation in the

relative usage of these instruments for liquidity purposes across firms, for which we find

strong empirical support. Similarly, the model successfully rationalizes time-series patterns

in corporations’ liquidity management. Overall, the model thus provides a quantitatively

and empirically successful framework explaining corporate investment, financing and liquid-

ity policies and the joint occurrence of cash, debt and credit lines in the presence of capital

market imperfections.

A large literature has recently attempted to rationalize the apparent secular trend in

firms’ cash holdings. It has been widely documented that in the US, firms’ cash-to-asset ratios

have increased dramatically since the 1970’s. While in this paper we focus on stationary

properties of firms’ liquidity policies, we think it would be interesting to examine the possible

determinants of this trend through the lens of our model. We leave this important question

for future research.
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6. Appendix

6.1. Definition of Credit Lines

Proposition 2 (Implementation with Credit Lines) State-contingent debt bi(s(t+ 1)) can

be implemented by the following combination of securities: state-uncontingent debt with face value

Di,t+1 ≥ 0, and a line of credit with undrawn credit CU
i (s(t+ 1)) ≥ 0, drawn part CD

i (s(t+1)) ≥
0, interest rate r, and limit CL

i (s(t+ 1)) ≥ 0. The firm uses the credit line to draw

∆CLD(s(t+ 1)) = max(0, (1 + r(1− τ))(Et[bi(s(t+ 1))]− bi(s(t+ 1))))

or restore

∆CLR(s(t+ 1)) = max(0, (1 + r(1− τ))(bi(s(t+ 1))− Et[bi(s(t+ 1))]))

in each state s(t+ 1) ∈ S

such that

CD
i (s(t+ 1)) = CD

i,t +∆CLD(s(t+ 1))−∆CLR(s(t+ 1))

from the credit line in each state s(t+ 1) ∈ S, and arranges a state-uncontingent loan Li,t at

time t of size

Li,t =


(1 + r(1− τ))Et[bi(s(t+ 1))] if CD

i (s(t+ 1)) ≥ 0, ∀s(t+ 1) ∈ S

max
s(t+1)∈S

∆CLR(s(t+ 1)) otherwise

(27)

where the face value Di,t+1 is given by

Di,t+1 = (1 + r(1− τ)) · Li,t (28)
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The dynamics of undrawn credit, credit line liimit, and drawn part in state s(t + 1) ∈ S are as

follows:

CD
i (s(t+ 1)) = CD

i,t +∆CL(s(t+ 1)) (29)

CL
i (s(t+ 1)) = CD

i,t +∆CL(s(t+ 1)) +Di,t+1

CU
i (s(t+ 1)) = CL

i (s(t+ 1))− CD
i (s(t+ 1))

Proof of Proposition 6.1. To prove the claim, we proceed in two steps. First, we show that the

payoff bi(s(t + 1)) can be replicated with the combination of securities described above. Second, we verify

that the recursive problem with the new securities is equivalent to the original one in terms of constraints.

First, in the recursive problem, at time t+1 in each state s(t+1) the firm pays back Di,t+1 − CD
i (s(t+ 1)).

Therefore, using (28) and (29) we obtain

Di,t+1 − CD
i (s(t+ 1)) = (1 + r(1− τ))bi(s(t+ 1)) (30)

from which the replication result follows:

bi(s(t+ 1)) =
Di,t+1 − CD

i (s(t+ 1))

1 + r(1− τ)
(31)

Because state-contingent debt can be directly expressed as the combination in (34) of state-uncontingent

debt and the credit line, the replicating strategy is trivially budget feasible at time t + 1. The resource

constraint at time t is also unchanged, because

wi,t + Li,t ≥ ei,t + ki,t+1 + ci,t+1 +Ψ(ki,t, ki,t+1)

can be rewritten as

wi,t + Et[bi(s(t+ 1))] ≥ ei,t + ki,t+1 + ci,t+1 +Ψ(ki,t, ki,t+1)

using (27) and (34). Finally, we shall show that the limits for the feasible set for bi(s(t + 1)) implied by

collateral and debt positivity constraints are preserved by the replicating portfolio of debt and lines of credit,

namely that:

0 ≤ Di,t+1 − CD
i (s(t)) ≤ θ(1− δ)ki,t+1

The debt positivity constraints can be rewritten as

CD
i (s(t+ 1)) ≤ (1 + r(1− τ))Et[b(s(t+ 1))]
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implying that the firm draws at most an amount equal to Di,t+1 and preserves its entire debt capacity

θ(1− δ)ki,t+1 as conditional liquidity in state s(t+1), and effectively repays bi(s(t+1)) = 0. The collateral

constraints can be rewritten as

−CD
i (s(t+ 1)) ≤ θ(1− δ)ki,t+1 −Di,t+1

implying that the firm sets the credit line balance CB
i (s(t + 1)) to θ(1 − δ)ki,t+1 in state s(t + 1), and

effectively repays bi(s(t+ 1)) = θ(1− δ)ki,t+1.

6.2. Proofs of Propositions

Proof of Lemma 1. From the definition of hCi (s(t+ 1)) we obtain:

bi(s(t+ 1)) =
θ(1− δ)ki,t+1 − hCi (s(t+ 1))

1 + r(1− τ)
(32)

Substituting (32) and the definition of hUi,t+1 into the original problem yields the result.

Proof of Proposition 1. Denote the total number of states by S. The Lagrangian function for the

constrained optimization problem is:

L(ei,t, ki,t+1, h
U
i,t+1, {hCi (s(t+1))}, {wi(s(t+1))}, λw,

{
π(s(t),s(t+1))λw

s(t+1)

1+r

}
,

{
π(s(t),s(t+1))λC

s(t+1)

1+r

}
,

{
π(s(t),s(t+1))λ

C
s(t+1)

1+r

}
, λU ) ≡

ei,t−Λ(ei,t)+
1

1+rEt[V (wi,t+1, zi,t+1)]+λ
w(wi,t−ei,t−Et

[
hC
i (s(t+1))
1+r(1−τ)

]
− hU

i,t+1

1+r(1−τ)−γ−Pki,t+1−Ψ(ki,t, ki,t+1))+

+
∑S

s=1
π(s(t),s)λw

s

1+r ((1− τ)Π(ki,t+1, zi,s) + (1− θ)(1− δ)ki,t+1 + τδki,t+1 + hTi (s)− wi(s)) +

+
∑S

s=1
π(s(t),s)λC

s

1+r (hCi (s)) +
∑S

s=1
π(s(t),s)λ

C
s

1+r (θ(1− δ)ki,t+1 − hCi (s)) + λU (hUi,t+1)

Differentiating the Lagrangian with rispect to ei,t, ki,t+1, h
U
i,t+1, {hCi (s(t + 1))}, and {wi(s(t + 1))} yields

equations (16a), (16b), (16c), (16d), (18b) after some algebraic manipulation. Because the Slater condition

holds, the envelope theorem can expressed as:

∂V (wi,t,zi,t)
∂wi,t

=
∂ei,t−Λ(ei,t)

∂wi,t
+ λw

∂(wi,t−ei,t−Et

[
hC
i (s(t+1))

1+r(1−τ)

]
−

hU
i,t+1

1+r(1−τ)−γ
−Pki,t+1−Ψ(ki,t,ki,t+1))

∂wi,t
+

+
∑S

s=1
π(s(t),s)λw

s

1+r
∂((1−τ)Π(ki,t+1,zi,s)+(1−θ)(1−δ)ki,t+1+τδki,t+1+hT

i (s)−wi(s))
∂wi,t

+
∑S

s=1
π(s(t),s)λC

s

1+r
∂(hC

i (s))
∂wi,t

+

+
∑S

s=1
π(s(t),s)λ

C
s

1+r
∂(θ(1−δ)ki,t+1−hC

i (s))
∂wi,t

+ λU
∂(hU

i,t+1)

∂wi,t

which immediately yields (18a). The Euler equation (19) can be simply obtained, by dividing both sides

of (16b) by λw. The division is well-defined because the resource constraint at time t is always binding.

Finally, equation (20) can be derived by substituting λws(t+1) from (16d) into the definition of Mw(s(t), s(t+

1)).

Proof of Proposition 6.1. To prove the claim, we proceed in two steps. First, we show that the

payoff bi(s(t + 1)) can be replicated with the combination of securities described above. Second, we verify
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that the recursive problem with the new securities is equivalent to the original one in terms of constraints.

First, in the recursive problem, at time t+1 in each state s(t+1) the firm pays back Di,t+1 − CD
i (s(t+ 1)).

Therefore, using (28) and (29) we obtain

Di,t+1 − CD
i (s(t+ 1)) = (1 + r(1− τ))bi(s(t+ 1)) (33)

from which the replication result follows:

bi(s(t+ 1)) =
Di,t+1 − CD

i (s(t+ 1))

1 + r(1− τ)
(34)

Because state-contingent debt can be directly expressed as the combination in (34) of state-uncontingent

debt and the credit line, the replicating strategy is trivially budget feasible at time t + 1. The resource

constraint at time t is also unchanged, because

wi,t + Li,t ≥ ei,t + ki,t+1 + ci,t+1 +Ψ(ki,t, ki,t+1)

can be rewritten as

wi,t + Et[bi(s(t+ 1))] ≥ ei,t + ki,t+1 + ci,t+1 +Ψ(ki,t, ki,t+1)

using (27) and (34). Finally, we shall show that the limits for the feasible set for bi(s(t + 1)) implied by

collateral and debt positivity constraints are preserved by the replicating portfolio of debt and lines of credit,

namely that:

0 ≤ Di,t+1 − CD
i (s(t)) ≤ θ(1− δ)ki,t+1

The debt positivity constraints can be rewritten as

CD
i (s(t+ 1)) ≤ (1 + r(1− τ))Et[b(s(t+ 1))]

implying that the firm draws at most an amount equal to Di,t+1 and preserves its entire debt capacity

θ(1− δ)ki,t+1 as conditional liquidity in state s(t+1), and effectively repays bi(s(t+1)) = 0. The collateral

constraints can be rewritten as

−CD
i (s(t+ 1)) ≤ θ(1− δ)ki,t+1 −Di,t+1

implying that the firm sets the credit line balance CB
i (s(t + 1)) to θ(1 − δ)ki,t+1 in state s(t + 1), and

effectively repays bi(s(t+ 1)) = θ(1− δ)ki,t+1.
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6.3. Solution by Mixed-Integer Programming

Any finite dynamic programming problem with infinite horizon can be equivalently formu-

lated as a linear programming problem (LP), where for each grid point on the state space,

every feasible decision corresponds to a constraint in the LP. Specifically, our model can be

formulated as an LP as follows:

min
vk,w,z

nk∑
k=1

nw∑
w=1

nz∑
z=1

vk,w,z (35)

s.t.

vk,w,z ≥ dk,w,z,a +
nz∑

z′=1

π(z′|z) 1

1 + r
vk′(a),w′(a),z′ ∀k, w, z, a (36)

where nk, nw, and nz are the number of grid points on the grids for ki,t, wi,t, and zi,t

respectively, vk,w,z is the value function on the grid point indexed by k, w and z, a is an

index for an action on the grid for both future capital, cash, and state-contingent debt

repayments, and dk,w,z,a denotes the payout corresponding to the action a starting from the

state indexed by k, w and z. k′(a) and w′(a) denote the future values for the state variables

given the current firm’s decisions. For a formal proof, we refer to Ross (1983).

As Trick and Zin (1993) discuss, solving the LP above would require to store a huge

matrix, because the number of constraints in the problem is very large. Computational

requirements would therefore be enormous. Thus, we implement constraint generation, a

standard method in operation research to solve problems with a large number of constraints.

First we solve a relaxed problem with the same objective. Second, we identify the remaining

constraints in the problem that are violated by the current solution. Third, we add a subset

of the violated constraints to the relaxed problem according to a selection rule. We iterate the

procedure is iterated until all constraints are satisfied. The following constraint generation

algorithm converges to the unique fixed point of our Bellman problem.

1. solve the problem in 35 with an initial random subset of constraints for each state (k, w, z);

2. if all constraints a ∈ Γn(k, w, z), for all (k, w, z), are satisfied, terminate the algorithm

(where Γn(k, w, z) is the set of feasible actions at iteration n);
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3. for each state (k, w, z), add the constraint a ∈ Γn(k, w, z) that generates the highest

violation in (36) with respect to the current solution vn(k, w, z);

4. solve the problem with the current set of constraints;

5. go back to step 2.

To practically implement the above procedure, another issue must be addressed. The

selection of the most violated constraint in the third step searching over an extremely large

vector of grid points for all the decision variables. The computational burden would still be

excessive for a model with many controls variables. We therefore use a separation oracle in

the third step. A separation oracle is an auxiliary mixed-integer programming problem that

identifies the most violated constraint.12 We specify the separation oracle for this problem

below:

12Separation oracles are standard tools in operation research. See for example Vielma and Nemhauser
(2011), Schrijver (1998), and Cook, Cunningham, Pulleyblank, and Schrijver (2011)
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Separation Oracle

max
a={k′,c′,b(z′)}

dk,w,z,a − Λ(dk,w,z,a) +
nz∑

z′=1

π(z′|z) 1

1 + r
vk′(a),w′(a),z′ − vk,w,z (37)

s.t.

0 ≤ b(z′) ≤ θk′(1− δ)

1 + r
∀z′ (38)

0 ≤ c′ ≤ C ∀z′ (39)

0 ≤ p(ik) ≤ 1 ∀ik = 1, ..., nk (40)
nk∑

ik=1

p(ik) = 1 (41)

k′ =

nk∑
ik=1

p(ik)k
G(ik) (42)

dk,w,z,a = w − k′ −Ψ(k, k′)− c′ +
nz∑

z′=1

π(z′|z) 1

1 + r
b(z′) (43)

dw,s,a ≥ 0 (44)

f(k′) =

nk∑
ik=1

p(ik)(k
G(ik))

α (45)

w(z′) = (1− τ)(z′f(k′)− f) + k′(1− δ)− (1 + r(1− τ))b(z′) (46)

+(1 + r(1− τ)− γ)c′ + τδk′ ∀z′ = 1...nz (47)

Equations (39) and (38) define the bounds for cash and debt, Equations (40) and (41) define

the variables p(ik) that have the role to select a grid point for capital on the grid kG(ik) and

linearize the term k′α in the production function, Equation (42) picks the grid point for the

chosen capital stock from kG(ik), Equation (43) defines dividends, Equation (45) computes

the nonlinear term in capital in the production function, and Equation (47) defines future net

worth in each state z′. The computation of the law of motion for future net worth is obtained

by interpolation with the logarithmic formulation of Vielma and Nemhauser (2011). Capital

adjustment costs Ψ(k, k′) and equity flotation costs Λ(dk,w,z,a) are instead incorporated using

a Big-M formulation. The solutions of the separation oracle for cash and state-contingent

debt are continuous variables and are interpolated to the nearest point on the corresponding

grid.
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We implement the codes with Matlab R⃝, and the solver for the mixed-integer programming

problems is CPLEX R⃝. The two applications are interfaced through the CPLEX Class API R⃝.

Our workstation has a CPU with 8 cores and 64GB of RAM. The model is solved with

seven grid points for the idiosyncratic shock, 21 grid points for capital, 17 grid points for

current net worth, and 500 points for cash and each state-contingent debt variable. Following

McGrattan (1997), the grids for net worth and capital are not evenly spaced, but more points

are collocated in the low net worth region, where the curvature of value function is more

relevant.

6.4. Estimation Procedure

We provide a brief discussion of the estimation procedure13. Let xi be an i.i.d. data vector,

i = 1, . . . , n, and let yis (β) be an i.i.d. simulated vector from simulation s, i = 1, . . . , n, and

s = 1, . . . , S. Here, n is the length of the simulated sample, and S is the number of times the

model is simulated. We pick n = 20, 000 and S = 10, following Michealides and Ng (2000),

who find that good finite-sample performance of a simulation estimator requires a simulated

sample that is approximately ten times as large as the actual data sample.

The simulated data vector, yis (β) , depends on a vector of structural parameters, β.

In our application β ≡ (α, f, ρz, σz, ψ0, ψ, θ, λ). The goal is to estimate β by matching a

set of simulated moments, denoted as h (yik (β)), with the corresponding set of actual data

moments, denoted as h (xi). The candidates for the moments to be matched include for

example simple summary statistics or OLS regression coefficients. Define

gn (β) = n−1

n∑
i=1

[
h (xi)− S−1

S∑
s=1

h (yis (b))

]
.

The simulated moments estimator of β is then defined as the solution to the minimization

of

β̂ = argmin
β
gn (β)

′ Ŵngn (β) ,

13The exposition closely follows Nikolov and Whited (2014).
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in which Ŵn is a positive definite matrix that converges in probability to a deterministic

positive definite matrix W . In our application, we use the inverse of the sample covariance

matrix of the moments, which we calculate using the influence function approach in Erickson

and Whited (2000).

The simulated moments estimator is asymptotically normal for fixed S. The asymptotic

distribution of β is given by

√
n
(
β̂ − β

) d

−→ N
(
0, avar(β̂)

)
in which

avar(β̂) ≡
(
1 +

1

S

)[
∂gn (β)

∂β
W
∂gn (β)

∂β′

]−1 [
∂gn (β)

∂β
WΩW

∂gn (β)

∂β′

] [
∂gn (β)

∂β
W
∂gn (β)

∂β′

]−1

(48)

in which W is the probability limit of Ŵn as n→ ∞, and in which Ω is the probability limit

of a consistent estimator of the covariance matrix of h (xi) .
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Table 1. Simulated Moments Estimation

Calculations are based on a sample of nonfinancial, unregulated firms from the annual COMPU-

STAT and Capital IQ datasets. The sample period is from 2002 to 2011. The estimation is done

with SMM, which chooses structural model parameters by matching the moments from a simulated

panel of firms to the corresponding moments from the data. Panel A reports the simulated and

the actual moments. Panel B reports the estimated structural parameters. α is the curvature of

the profit function. f is the fixed production cost. ρz is the serial correlation of ln(z). σz is the

standard deviation of the innovation of ln(z). ψ0 is the fixed capital adjustment cost. ψ is the

variable adjustment cost. θ is the debt capacity. λ is the equity flotation cost. Standard errors are

in parenthesis under the parameter estimates.

Panel A: Moments

Actual moments Simulated moments

Average cash 0.1444 0.1115
Variance of cash 0.0048 0.0178
Autocorrelation of cash 0.6992 0.7525
Average credit line limit 0.1785 0.1651
Average undrawn credit 0.7959 0.8836
Variance of undrawn credit 0.0366 0.0520
Autocorrelation of undrawn credit 0.2710 0.2608
Average leverage 0.3548 0.2705
Variance of leverage 0.0107 0.0191
Autocorrelation of leverage 0.5453 0.7159
Average operating income 0.1161 0.1252
Variance of operating income 0.0039 0.0047
Autocorrelation of operating income 0.6662 0.8289
Average investment 0.1124 0.1266
Variance of investment 0.0031 0.0137
Autocorrelation of investment 0.4309 0.3813
Average Tobin’s q 1.8106 1.7196
Average equity issuance 0.0342 0.0137

Panel B. Parameter estimates
α f ρz σz ψ0 ψ θ λ

0.6011 0.1192 0.8698 0.1365 0.0219 0.4944 0.5552 0.0937
(0.0582) (0.0062) (0.0684) (0.0157) (0.0052) (0.1995) (0.0738) (0.0179)
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Table 3. Capital, Net Worth, Profitability and Corporate Liquidity

The table reports estimates from linear panel regressions of total liquidity, and the propor-
tion of conditional to total liquidity on the determinants of liquidity identified by the model as its
state variables. The specifications denoted as Data use real data, while those denoted as Model
are averages of 100 simulated panels of 1000 firms for 20 years. Data are obtained by merging
Compustat and CapitalIQ for the period 2000-2011. Under the implementation with credit lines
and cash described in the manuscript, conditional liquidity LC is measured as the undrawn amount
from firms’ lines of credit, and unconditional liquidity LU is measured as firms’ cash holdings.
Total liquidity LT is given by

LT = LC + LU

Total liquidity measures are scaled by firms’ total assets. The determinants are firms’ (log) net
worth, (log) capital, and profitability. Following Rampini, Sufi, and Viswanathan (2014), net worth
is defined as the book value of equity, measured as in Fama and French (1993). Capital is the book
value of property, plant and equipment. Profitability is the ratio of firms’ operating profits before
depreciation and firms’ capital.We exclude financials (SIC 4900-4099), utilities (SIC 6000-6999),
and firms from other regulated industries (SIC greater than 9000). The final sample consists of
36,262 firm-year observations. All variables are winsorized at the 1 percent level. The specifications
in columns (1) and (3) include firm fixed effects. All standard errors are clustered at the firm level.
T-statistics are in parentheses.

Total Liquidity Conditional Liquidity
(1) Data (2) Model (3) Data (4) Model

Net Worth 0.046 0.502 -0.010 -0.640
(17.063) (45.907) (-2.806) (-22.528)

Capital -0.071 -0.543 0.054 0.734
(-21.235) (-93.862) (13.312) (21.129)

Profitability -0.002 -0.555 0.001 0.232
(-2.941) (-15.327) (1.240) (1.361)

Adj. R2 27.16 95.50 15.36 59.40
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Table 4. Correlations: Liquidity, Investment, and External Financing.

The table reports pairwise time-series correlations among equity issues, changes in cash,
changes in drawn credit, investment and operating income. The column denoted as ’Data’ use real
data, while the one denoted as ’Model’ are based on a simulated panel of 1000 firms for 100 years.
Data are obtained by merging Compustat and CapitalIQ for the period 2000-2011. All correlations
are equally-weighted averages of individual firms’ correlations. All variables are scaled by total
assets with the exception of the change in drawn credit, which is scaled by the credit line limit.
We exclude financials (SIC 4900-4099), utilities (SIC 6000-6999), and firms from other regulated
industries (SIC greater than 9000). The final sample consists of 36,262 firm-year observations. All
variables are winsorized at the 1 percent level.

Correlation Data Model
Equity Issuance and Change in Cash 0.070 0.144
Equity Issuance and Change in Drawn Credit 0.008 -0.005
Equity Issuance and Investment 0.110 0.102
Equity Issuance and Operating Income -0.265 -0.223
Drawn Credit and Change in Cash -0.011 0.059
Drawn Credit and Investment 0.035 -0.041
Drawn Credit and Operating Income 0.017 0.032
Operating Income and Change in Cash -0.075 0.059
Operating Income and Change in Drawn Credit 0.017 0.032
Operating Income and Investment 0.107 0.494
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Figure 1. The Fundamental Economic Tradeoff: Illustration

The figure depicts the timing of events for the illustration of the tradeoff between condi-
tional and unconditional liquidity in Section 2. Panel A refers to the case where the firm can
only engage in unconditional liquidity management using cash. Panel B refers to the case where
the firm can also implement conditional liquidity management using lines of credit.

Panel A: Unconditional Liquidity Only

Panel B: Unconditional and Conditional Liquidity
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Figure 2. Firm’s policy with no persistence and no adjustment costs

The figure illustrates the investment, financing, and risk management policy of the firm as
a function of current net worth wi,t. For illustrative purposes, the model is solved with a number
of states equal to three, with uniform transition probabilities, and with all adjustment costs
parameters set to zero. Dividends are constrained to be positive, that is no equity issues are
possible. The values for the exogenous productivity shock zi,t are set to -0.3000 for the low state,
to 0.5000 for the middle state, and to 1.7000 for the high state. Panels A through F show: the
future capital stock ki,t+1, the net equity payout ei,t the equity value Vi,t, the observed debt stock
E[bi(s(t + 1))], unconditional hedging (cash) hUi,t+1, and conditional hedging hCi (s(t + 1)). In
panel F, the solid blue line represents total debt capacity θδki,t+1 the solid thick line conditional
hedging for the middle state, the dashed thick line conditional hedging for the low state, the
dashed-dotted thick line conditional hedging for the high state. The remaining parameter values
are as follows: α = 0.5000, f = 0.0000, τ = 0.3500, θ = 0.5000, γ = 0.0010, r = 0.0100.
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Figure 3. Firm’s policy with persistence and no adjustment costs

The figure illustrates the investment, financing, and risk management policy of the firm as
a function of current net worth wi,t. For illustrative purposes, the model is solved with a number
of states equal to three, and with all adjustment costs parameters set to zero. From each state,
the transition matrix attaches probability 0.5 to remain in the same state, and 0.25 to move to
each of the remaining two states. Dividends are constrained to be positive, that is no equity issues
are possible. The values for the exogenous productivity shock zi,t are set to 0.2000 for the low
state, to 0.5000 for the middle state, and to 0.8000 for the high state. Panels A through F show:
the future capital stock ki,t+1, the net equity payout ei,t the equity value Vi,t, the observed debt
stock E[bi(s(t+1))], unconditional hedging (cash) hUi,t+1, and conditional hedging hCi (s(t+1)). In
panel F, the solid blue line represents total debt capacity θδki,t+1 the solid thick line conditional
hedging for the middle state, the dashed thick line conditional hedging for the low state, the
dashed-dotted thick line conditional hedging for the high state. The remaining parameter values
are as follows: α = 0.5000, f = 0.0000, τ = 0.3500, θ = 0.6000, γ = 0.0010, r = 0.0100.
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Figure 4. Firm’s policy with convex investment adjustment costs

The figure illustrates the investment, and risk management policy of the firm as a func-
tion of current net worth wi,t (Panels A-C) and current capital stock ki,t (Panels D-F). For
illustrative purposes, the model is solved with a number of states equal to three. The convex
investment adjustment cost parameter ψ+ is set to 1.0000. All the other capital adjustment cost
parameters are set to zero. From each state, the transition matrix attaches probability 0.5 to
remain in the same state, and 0.25 to move to each of the remaining two states. Dividends are
constrained to be positive, that is no equity issues are possible. The values for the exogenous
productivity shock zi,t are set to 0.3000 for the low state, to 0.7000 for the middle state, and to
1.1000 for the high state. Panels A through C show: the future capital stock ki,t+1, unconditional
hedging (cash) hUi,t+1, and conditional hedging hCi (s(t + 1)) as a function of current net worth.
Panels D through F show: the investment-to-capital ratio ii,t/ki,t, unconditional hedging (cash)
hUi,t+1, and conditional hedging hCi (s(t + 1)) as a function of the current capital stock. In panels
C and F, the solid blue line represents total debt capacity θδki,t+1 the solid thick line conditional
hedging for the middle state, the dashed thick line conditional hedging for the low state, the
dashed-dotted thick line conditional hedging for the high state. The remaining parameter values
are as follows: α = 0.5000, f = 0.0000, τ = 0.3500, θ = 0.6000, γ = 0.0010, r = 0.0100.
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Figure 5. Firm’s policy with fixed investment adjustment costs

The figure illustrates the investment, and risk management policy of the firm as a func-
tion of current net worth wi,t (Panels A-C) and current capital stock ki,t (Panels D-F). For
illustrative purposes, the model is solved with a number of states equal to three. The convex
investment adjustment cost parameter ψ+

0 is set to 0.0750. All the other capital adjustment cost
parameters are set to zero. From each state, the transition matrix attaches probability 0.5 to
remain in the same state, and 0.25 to move to each of the remaining two states. Dividends are
constrained to be positive, that is no equity issues are possible. The values for the exogenous
productivity shock zi,t are set to 0.3000 for the low state, to 0.7000 for the middle state, and to
0.9000 for the high state. Panels A through C show: the future capital stock ki,t+1, unconditional
hedging (cash) hUi,t+1, and conditional hedging hCi (s(t + 1)) as a function of current net worth.

Panels D through F show: the future capital stock ki,t+1, unconditional hedging (cash) hUi,t+1, and

conditional hedging hCi (s(t+1)) as a function of the current capital stock. In panel D, k∗ denotes
the ”frictionless” level of capital with ψ+

0 = 0, while kD and kU are the bounds of the inaction
region. In panels C and F, the solid blue line represents total debt capacity θδki,t+1 the solid
thick line conditional hedging for the middle state, the dashed thick line conditional hedging for
the low state, the dashed-dotted thick line conditional hedging for the high state. The remaining
parameter values are as follows: α = 0.3500, f = 0.0000, τ = 0.3500, θ = 0.4000, γ = 0.0010,
r = 0.0100.
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Figure 6. Comparative Statics - Technology.

Figure 6 depicts the relation between the curvature of the profit function, α, the fixed production

cost, f , the serial correlation of ln(z), ρz, and the standard deviation of the innovation of ln(z),

σz, and i) the cash to asset ratio, ii) the fraction of undrawn credit over the credit line limit, and

iii) the leverage ratio.
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Figure 7. Comparative Statics - Investment and Financing.

Figure 7 depicts the relation between the fixed capital adjustment cost, ψ0, the variable adjustment

cost, ψ, debt capacity, θ, and the equity flotation cost, λ, and i) the cash to asset ratio, ii) the

fraction of undrawn credit over the credit line limit, and iii) the leverage ratio.
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