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Abstract

Given asset price time series, we study the problem of forming portfolios with maximum
mean reversion while constraining the number of assets in these portfolios. We show that this
problem is equivalent to sparse canonical correlation analysis and study various algorithms to
solve the corresponding sparse generalized eigenvalue problems. Finally, we test the perfor-
mance of various convergence trading strategies on these portfolios.

1 Introduction

Mean reversion has received a very significant amount of attention as a classic indicator of pre-
dictability in financial markets and is often apparent in equity index returns over long horizons.
While mean reversion is easy to identify in univariate time series, isolating portfolios of asset with
maximum mean reversion is a much more complex problem. Classic solutions include cointegra-
tion or canonical correlation analysis, which will be discussed in what follows.

The problem with theses techniques though is that the mean reverting (or momentum) portfo-
lios they identify are often dense, i.e. they include every asset in the time series analyzed. For
arbitrageurs, this is an issue because exploiting the corresponding statistical arbitrage opportuni-
ties involves considerabletransaction costs. For econometricians, this is also a problem since it
impacts theinterpretability of the resulting portfolio. Finally, optimally mean reverting portfo-
lios often behave like noise and sometimes vary well inside bid-ask spreads, hence do not form
meaningful statistical arbitrage opportunities.

Here, we would like to argue that seekingsparse portfolios instead, i.e. optimally mean re-
verting portfolios with a few assets, solves many of these issues at once. Fewer assets means less
transaction costs, and more interpretable results. Although we will show that the tradeoff between
mean reversion and sparsity is often very favorable, penalizing for sparsity also means that sparse
portfolios vary in a wider range of prices, which means that the market inefficiencies it isolates are
more significant.

Mean reversion has of course received a considerable amountof attention in the literature, most
authors, such as Fama & French (1988), Poterba & Summers (1988) among many others, using it
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to model and test for market predictability in excess returns. Cointegration techniques, (see Engle
& Granger (1987), and Alexander (1999) for a survey of applications in finance) are usually used
to extract mean reverting portfolios from multivariate time series. Early techniques relied on a
mix of regression and Dickey & Fuller (1979) stationarity tests or Johansen (1988) type tests. It
was subsequently discovered that an earlier decompositiontechnique due to Box & Tiao (1977)
could be used to extract cointegrated vectors by solving a generalized eigenvalue problem, see
Bewley, Orden, Yang & Fisher (1994) for a discussion. Several authors then focused on the optimal
investment problem when expected returns are mean reverting, with Kim & Omberg (1996) and
Campbell & Viceira (1999) or Wachter (2002) for example obtaining closed-form solutions in some
particular cases. Liu & Longstaff (2004) study the optimal investment problem in the presence of a
“textbook” finite horizon arbitrage opportunity, modeled as a Brownian bridge, while Jurek & Yang
(2006) study this same problem when the arbitrage horizon isindeterminate. Gatev, Goetzmann
& Rouwenhorst (2006) also studied the performance of pairs trading, which are classic examples
of structurally mean-reverting portfolios. Finally, the LTCM meltdown in 1998 focused a lot of
attention on the impact of leverage limits and liquidity, see Grossman & Vila (1992) or Xiong
(2001) for a discussion.

Our contribution here is twofold. First, we describe two algorithms for extracting sparse mean
reverting portfolios from multivariate time series. One isbased on a simple greedy search on the
list of assets to include. The other uses semidefinite relaxation techniques to directly get good
solutions. Second, we study the sparsity mean reversion tradeoff in several markets, then test the
impact of these portfolios’ predictability using various convergence trading strategies.

The paper is organized as follows. In Section 2, we detail twoalgorithms to extract small
mean reverting portfolios from multivariate data sets. In Section 3, we show how to form optimal
portfolios of assets following an Ornstein-Uhlenbeck process. Finally, we present some empirical
results in Section 4.

2 Small mean reverting portfolios

Let Sti be the value at timet of an assetSi for i = 1, . . . , n andt = 1, . . . , m. In what follows,
our objective will be to form portfoliosPt of assets with coefficientsxi which follow an Ornstein-
Uhlenbeck process given by:

dPt = λ(P̄ − Pt)dt + σdZt with Pt =
n
∑

i=1

xiSti

whereZt is a standard Brownian motion. We will seek to maximize the mean reversion coefficient
λ of Pt by adjusting the coefficientsxi, under the constraints that‖x‖ = 1 (for) and that the
cardinality ofx, i.e. the number of nonzero coefficients inx, remains below a certain levelk > 0.
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2.1 Canonical decompositions

For time series analysis in this section, we will work in a discrete setting and assume that the asset
prices follow a (stationary) autoregressive process with:

St = ASt−1 + Zt (1)

whereSt−1 is the lagged portfolio process,A ∈ Rn×n andZt is a vector of i.i.d. Gaussian noise
with zero mean and covarianceΣ ∈ Sn, independent ofSt−1. The canonical analysis in Box &
Tiao (1977) starts as follows. Suppose we taken = 1 in equation (1) above, we get:

E[S2
t ] = E[(ASt−1)

2] + E [Z2
t ]

which can be rewritten asσ2
t = σ2

t−1 + Σ. Box & Tiao (1977) then measure the predictability of
stationary series by:

λ =
σ2

t−1

σ2
t

. (2)

Suppose now that we consider a portfolioPt = xT St with x ∈ Rn, using (1) we know that
xT St = xT ASt−1 + xT Zt, so its predicability can be measured as:

λx =
xT AΓAT x

xT Γx

whereΓ = E[SST ]. This means that the portfolio with maximum (resp. minimum)predictability
will be the eigenvector corresponding to the largest (resp.smallest) eigenvalue of the the matrix:

Γ−1AΓAT . (3)

Bewley et al. (1994) show that both the Box-Tiao canonical decompositions and the Johansen
maximum likelihood decompositions can be be formulated in this manner and we briefly recall
their result below. Following Bewley et al. (1994), equation (1) can be rewritten:

St = Ŝt + Ẑt

whereŜt is the least squares estimate ofSt with Ŝt = St−1Â and:

Â =
(

ST
t−1St−1

)−1
ST

t−1St.

Box-Tiao procedure. The Box & Tiao (1977) procedure then finds linear combinations of the
assets ranked in order of predictability by computing the eigenvectors of the matrix:

(

ST S
)−1
(

ŜT
t Ŝt

)

(4)

where isŜt is the least squares estimate computed above.
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Johansen procedure. Following Bewley et al. (1994), the maximum likelihood procedure for
estimating cointegrating vectors derived in Johansen (1991) can also be written as a canonical
decomposition à la Box & Tiao (1977). This time however, we perform a canonical analysis
between the first order differences of the seriesSt and their lagged valuesSt−1, so we rewrite
equation (1) as:

∆St = QSt−1 + Zt

whereQ = A − I. The basis of (potentially) cointegrating portfolios is then found by solving the
following generalized eigenvalue problem:

λST
t−1St−1 − ST

t−1∆St(∆ST
t ∆St)

−1∆ST
t St−1 (5)

in the variableλ ∈ R.

2.2 Sparse generalized eigenvalue problems

Both problems above can be written as generalized eigenvalue problems of the form:

det(λA − B) = 0 (6)

in the variableλ ∈ R, whereA, B ∈ Sn. This is usually solved using a QZ decomposition. The
largest solution of this problem can be written in variational form as:

λmax = max
x∈Rn

xT Bx

xT Ax
.

Here however, we seek to maximize that ratio while constraining the cardinality of the (portfolio)
coefficient vectorx and solve instead:

maximize xT Ax/xT Bx
subject to Card(x) ≤ k

‖x‖ = 1,
(7)

wherek > 0 is a given constant andCard(x) is the number of nonzero coefficients inx. This will
compute a sparse portfolio with maximum predictability (ormomentum), a similar problem can be
formed to minimize it (and obtain small mean reverting portfolios). This is a (hard) combinatorial
problem, so we can’t expect to get optimal solutions and we discuss below two efficient techniques
to get good approximate solutions.

Greedy optimization. Let us callI the support of the vectorx in problem (7) above:

Ik = {i ∈ [1, n] : xi 6= 0},

so by construction|Ik| ≤ k. Let us now build approximate solutions to (7) recursively in k. When
k = 1, we can simply findI1 as:

I1 = argmax
i∈[1,n]

Aii/Bii.
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Suppose now that we have a good approximate solution with support setIk given by:

xk = argmax
{x∈Rn

: xIc
k
=0}

xT Bx

xT Ax
,

which can be solved as a generalized eigenvalue problem of sizek. We seek to add one variable
with indexik+1 to the setIk to produce the largest increase in predictability. The index ik+1 can be
computed as:

ik+1 = argmax
i

max
{x∈Rn

: xJc
i
=0}

xT Bx

xT Ax
, whereJi = Ik ∪ {i}

and we can then defineIk+1 = Ik ∪ {ik+1}. Naturally, the optimal solutions of problem (7) might
not have increasing support setsIk ⊂ Ik+1 hence the solutions found by this recursive algorithm
are potentially far from optimal. However, the cost of this method is relatively low: with each
iteration costingO(k2(n − k)), the complexity of computing solutions for allk is in O(n4). This
recursive procedure can also be repeated both forward and backward to improve the quality of the
solution.

Semidefinite relaxation. Here, we derive a semidefinite relaxation for sparse generalized eigen-
value problems in (7):

maximize xT Ax/xT Bx
subject to Card(x) ≤ k

‖x‖ = 1,

with variablex ∈ Rn. As in d’Aspremont, El Ghaoui, Jordan & Lanckriet (2007), wecan form an
equivalent program in terms ofX = xxT ∈ Sn:

maximize Tr(AX)/Tr(BX)
subject to Card(X) ≤ k2

Tr(X) = 1
X � 0, Rank(X) = 1,

in the variableX ∈ Sn. This program is equivalent to the first one: ifX is a solution to the
above problem, thenX � 0 andRank(X) = 1 mean that we haveX = xxT , while Tr(X) = 1
implies that‖x‖2 = 1. Finally, if X = xxT thenCard(X) ≤ k2 is equivalent toCard(x) ≤ k.
Now, sinceCard(u) = q implies ‖u‖1 ≤ √

q‖u‖2, we can replace the nonconvex constraint
Card(X) ≤ k2, by a weaker but convex constraint:1

T |X|1 ≤ k, using‖X‖F =
√

xT x = 1
whenX = xxT andTr(X) = 1. We can then relax (in fact, drop) the rank constraint in this
program to get the following quasi-convex program:

maximize Tr(AX)/Tr(BX)
subject to 1

T |X|1 ≤ k
Tr(X) = 1
X � 0,

(8)
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in the variableX ∈ Sn. We do the following change of variables:

Y =
X

Tr(BX)
, z =

1

Tr(BX)

and solve:
maximize Tr(AY )
subject to 1

T |Y |1 − kz ≤ 0
Tr(Y ) − z = 0
Tr(BY ) = 1
Y � 0,

(9)

which is a semidefinite program (SDP) in the variablesY ∈ Sn andz ∈ R+ and can be solved
using standard SDP solvers such as SEDUMI by Sturm (1999) andSDPT3 by Toh, Todd & Tutuncu
(1999). We can extract an approximate solution to (7) as the rescaled dominant eigenvector of the
optimal solution to (9).

3 Dynamic portfolio selection

In the previous section, we have showed how to extract small mean reverting (or predictable)
portfolios from asset time series. In this section we assumethat we have identified such a mean
reverting portfolio with dynamics given by:

dPt = λ(P̄ − Pt)dt + σdZt, (10)

and we detail how to optimally trade these portfolios under various assumptions regarding market
friction and risk-management constraints. We begin by quickly recalling results on estimating
Ornstein-Uhlenbeck processes.

3.1 Estimating Ornstein-Uhlenbeck processes

By integratingPt over a time increment∆t we get:

Pt = P̄ + e−λ∆t(Pt−∆t − P̄ ) + σ

∫ t

t−∆t

eλ(s−t)dZs,

which means that we can estimateλ andσ by simply regressingPt onPt−∆t and a constant. With

∫ t

t−∆t

eλ(s−t)dZs ∼
√

1 − e−2λ∆t

2λ
N (0, 1),

we get the following estimators for the parameters ofPt:

µ̂ =
1

N

N
∑

i=0

Pti
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λ̂ = − 1

∆t
log

(

∑N

i=1(Pti − µ̂)(Pti−1
− µ̂)

∑N

i=1(Pti − µ̂)(Pti − µ̂)

)

σ̂ =

√

√

√

√

2λ

(1 − e−2λ∆t)(N − 2)

N
∑

i=1

(

(Pti − µ̂) − e−λ∆t(Pti−1
− µ̂)

)2

whereti = i∆t, for i = 0, . . . , N andtN = T .

3.2 Utility maximization in frictionless markets

Suppose now that an agent invests in an assetPt and in a riskless bondBt following:

dBt = rBtdt,

the wealthWt of this agent will follow:

dWt = NtdPt + (Wt − NtPt)rdt.

If Pt follows a mean reverting process given by (10), this is also:

dWt = (r(Wt − NtPt) + λ(P̄ − Pt)Nt)dt + NtσdZt.

If we write the value function:

V (Wt, Pt, t) = max
N•

Et

[

e−β(T−t)U(Wt)
]

,

the H.J.B. equation for this problem can be written:

βV = max
Nt

∂V

∂P
λ(P̄t − Pt) +

∂V

∂W
(r(Wt − NtPt) + λ(P̄ − Pt)Nt) +

∂V

∂t

+
1

2

∂2V

∂P 2
σ2 +

1

2

∂2V

∂P∂W
Ntσ

2 +
1

2

∂2V

∂W 2
N2

t σ2

Maximizing inNt yields the following expression for the number of shares in the optimal portfolio:

Nt =
∂V /∂W

∂2V /∂W 2σ2
(λ(P̄ − Pt) − rPt) −

∂2V /∂P∂W

∂2V /∂W 2
(11)

Jurek & Yang (2006) solve this equation explicitly forU(x) = log x andU(x) = x1−γ/(1 − γ)
and we recover in particular the classic expression:

Nt =

(

λ(P̄ − Pt) − rPt

σ2

)

Wt,

in the log-utility case.
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3.3 Leverage constraints

Suppose now that the portfolio is subject to fund withdrawals so that the total wealth evolves
according to:

dW = dΠ + dF

wheredΠ = NtdPt + (Wt − NtPt)rdt anddF represents fund flows, with:

dF = fdΠ + σfdZ
(2)
t

whereZ
(2)
t is a Brownian motion (independent ofZt). Jurek & Yang (2006) show that the optimal

portfolio allocation can also be computed explicitly in thepresence of fund flows, with:

Nt =

(

λ(P̄ − Pt) − rPt

σ2

)

1

(1 + f)
Wt = LtWt,

in the log-utility case.
The constantf also implicitly limits leverage. In steady state, we have:

Pt ∼ N
(

P̄ ,
σ2

2λ

)

which means that the leverageLt itself is normally distributed. If we assume for simplicitythat
P̄ = 0, given the fund flow parameterf , the leverage will remain below the levelM given by:

M =
α(λ + r)

(1 + f)σ
√

2λ

with confidence levelN(α), whereN(x) is the Gaussian CDF. The bound on leverageM can thus
be seen as an alternate way of identifying or specifying the fund flow constantf in order to manage
capital outflow risks.

4 Empirical results

In this section, we first compare the performance of the algorithms described in Section 2. We then
study the mean reversion versus sparsity tradeoff on various financial instruments. Finally, we test
the performance of the convergence trading strategies described in Section 3.

4.1 Numerical performance

In Figure 1 we plot the result of the Box-Tiao decomposition on U.S. swap rate data (see details
below). Each portfolio is adense linear combination of swap rates, ranked in decreasing order
of predictability. In Figure 2, we apply the greedy search algorithm detailed in Section 2.2 to the
same data set, we plot thesparse portfolio processes obtained by constraining the sparsityof the
portfolios. Each subplot lists the numberk of nonzero coefficients of the corresponding portfolio
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and its mean reversion coefficientλ. Finally, Figure 3 compares the performance of the greedy
search algorithm versus the semidefinite relaxation derived in Section 2.2. For each algorithm, we
plot the mean reversion coefficientλ versus portfolio cardinality (number of nonzero coefficients).
We observe on this example that while the semidefinite relaxation does produce better results in
some instances, the greedy search is more reliable. Of course, both algorithms recover the same
solutions when the target cardinality is set tok = 1 or k = n.

4.2 Mean reversion versus sparsity

In this section, we study the mean reversion versus sparsitytradeoff on several data sets. We also
test the persistence of this mean reversion out of sample.

Swap rates. In Figure 4 we compare in and out of sample estimates of the mean reversion versus
cardinality tradeoff. We study U.S. swap rate data for maturities 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y and
30Y from 1998 until 2005. We first use the greedy algorithm of Section 2.2 to compute optimally
mean reverting portfolios of increasing cardinality for time windows of 200 days and repeat the
procedure every 50 days. We plot average mean reversion versus cardinality in Figure 4 on the
left. We then repeat the procedure, this time computing the mean reversion in the 200 days (out
of sample) time window immediately following our sample andalso plot average mean reversion
versus cardinality. In Figure 4 on the right, we plot the out of sample portfolio price range (spread
between min. and max. in basis points) versus cardinality (number of nonzero coefficients) on the
same U.S. swap rate data.

4.3 Optimal portfolios

Here, we measure the performance of the convergence tradingstrategies detailed in Section 3. In
Figure 5 we plot average out of sample sharpe ratio versus portfolio cardinality on a 50 days (out
of sample) time window immediately following the 100 days over which we estimate the process
parameters.
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Figure 4:Left: mean reversion coefficientλ versus portfolio cardinality (number of nonzero coef-
ficients), in sample (blue circles) and out of sample (black squares) on U.S. swaps.Right: out of
sample portfolio price range (in basis points) versus cardinality (number of nonzero coefficients)
on U.S. swap rate data. The dashed lines are at plus and minus one standard deviation.
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