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ABSTRACT. This paper is concerned with the characterization of arbitrage free dynamic stochastic
models for the equity markets when Itô stochastic differential equations are used to model the dynam-
ics of a set of basic instruments including, but not limited to, the underliers. We study these market
models in the framework of the HJM philosophy originally articulated for Treasury bond markets. The
approach to dynamic equity models which we follow was originally advocated by Derman and Kani
in a rather informal way. The present paper can be viewed as a rigorous development of this program,
with explicit formulae, rigorous proofs and numerical examples.
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1. INTRODUCTION AND NOTATION

Most financial market models introduced for the purpose of pricing and hedging derivatives con-
centrate on the dynamics of the underlying stocks, or underlying instruments on which the derivatives
are written. This is clearly the case in the Black-Scholes theory where the focus is on the dynamics
of the underlying stocks, whether they are assumed to be given by geometric Brownian motions or
more general non-negative diffusions, or even semi-martingales with jumps. In contrast, the focus
of the present paper is on the simultaneous dynamics of all the liquidly traded derivative instruments
written on the underlying stocks.

For the sake of simplicity, we limit ourselves to a single underlying index or stock on which all the
derivatives under consideration are written. Choosing more underliers would force the price process
to be multivariate and make the notation significantly more complicated, unnecessarily obscuring the
nature of the results.

We denote by {St}t≥0 the price process underlying the derivative instruments forming the market.
In order to further simplify the notation, we assume that the discount factor is one, or equivalently
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encouraging discussions.
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that the short interest rate is zero, i.e. rt ≡ 0, and that the underlying stock does not pay dividends.
These assumptions greatly simplify the notation without affecting the generality of our derivations.

We assume that in our idealized market, European call options of all strikes and maturities are
traded, that their prices are observable, and that they can be bought or sold at these prices in any
quantity. We denote by Ct(T,K) the market price at time t of a European call option of strike
K and maturity T > t. We assume that today, i.e. on day t = 0, all the prices C0(T,K) are
observable. According to the philosophy of market models adopted in this paper, at any given time
t, instead of working directly with the price St of the underlying asset, we use the set of call prices
{Ct(T,K)}T≥t,K≥0 as our fundamental market data. This is partly justified by the well documented
fact that many observed option price movements cannot be attributed to changes in St, and partly by
the fact that many exotic (path dependent) options are hedged (replicated) with portfolios of plain
(vanilla) call options.

Note that in our idealized market, we assume that European call options of all strikes and all
maturities are liquidly traded. This assumption is highly unrealistic. In practice, the best one can hope
for is, for a finite set of discrete maturities T1 < T2 < · · · < Tn, quotes for the prices Ct(Ti,Kij)
of a finite set of call options. In other words, for each of the maturities Ti, prices of calls are only
available for a finite set Ki1 < Ki2 < · · · < Kini of strikes. This more realistic form of the set-up has
been considered, starting with the work of Laurent and Leisen [24], followed by the recent technical
reports by Cousot [9] and Buehler [5] who use Kellerer [22] theorem, and by the recent work of Davis
and Hobson [10] which relies instead on the Sherman-Stein-Blackwell theorem [35, 36, 2].

For the sake of convenience, we denote by τ = T − t the time to maturity of the option and we
denote by C̃t(τ,K) the price Ct(T,K) expressed as a function of this new variable. In other words

C̃t(τ,K) = Ct(t + τ,K), τ > 0, K > 0.

Despite the shortcomings which we will have to deal with, this switch in notation has the clear ad-
vantage of casting the data at each time t, into a surface parameterized over a range {(τ,K); τ >
0, K > 0} which does not change with t. We work in a linear pricing system. In other words, we
assume that the market prices by expectation in the sense that the prices of the liquid instruments are
given by expectations of the present values of their cashflows. So saying that Q is a pricing measure
used by the market implies that for each time t ≥ 0 we have

C̃t(τ,K) = E{(St+τ −K)+|Ft} = EQt{(St+τ −K)+}.

if we denote by Qt a regular version of the conditional probability of Q with respect to Ft. For each
τ > 0, we denote by µ̃t,t+τ the distribution of St+τ for the conditional distribution Qt. It is an Ft-
measurable random measure. With this notation

C̃t(τ,K) =
∫ ∞

0
(x−K)+ dµ̃t,t+τ (dx)

and for each fixed τ > 0, the knowledge of the prices C̃t(τ,K) for all the stikes K > 0 completely
determines the distribution µ̃t,t+τ on [0,∞).

Notice that we do not assume uniqueness of the pricing measure Q. In other words, our analysis
holds in the case of incomplete models as well as complete models.
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Notation Convention. In order to help with the readability of the paper, we use a notation without a
tilde or a hat for all the quantities expressed in terms of the variables T and K. But we shall add a
tilde when such a quantity is expressed in terms of the variables τ and K, and a hat when the strike is
given in terms of the variable x = log K.
Implied Volatility Code-Book In the classical Black-Scholes theory, the dynamics of the underlying
asset are given by the stochastic differential equation

(1) dSt = StσdWt, S0 = s0

for some univariate Wiener process {Wt}t and some positive constant σ. In this case, the price
C̃t(τ,K) of a call option is given by the Black-Scholes formula

(2) BS(S, τ, σ,K) = StΦ(d1)−KΦ(d2)

with

d1 =
− log Mt + τσ2/2

σ
√

τ
, d2 =

− log Mt − τσ2/2
σ
√

τ

where Mt = K/St is the moneyness of the option and where we use the notation Φ for the cumulative
distribution of the standard normal distribution. The Black-Scholes price is an increasing function of
the parameter σ when all the other parameters are held fixed. As a consequence, for every real number
C (think of such a number as a quoted price for a call option with time to maturity τ and strike K) in
the interval between (St−K)+ and St, there exists a unique number σ for which C̃t(τ,K) = C. This
unique value of σ given by inverting Black-Scholes formula (2) is known as the implied volatility and
we shall denote it by Σ̃t(τ,K). This quantity is extremely important as it is used by most if not all
market participants as the currency in which the option prices are quoted. For each time t > 0, the
one-to-one correspondence

{C̃t(τ,K); τ > 0,K > 0} ↔ {Σ̃t(τ,K); τ > 0,K > 0}
offers a code-book translating without loss all the information given by the call prices in terms of
implied volatilities. We call it the implied volatility code-book. The mathematical analysis of this
surface is based on a subtle mixture of empirical facts and arbitrage theories, and it is rather technical
in nature. The literature on the subject is vast and it cannot be done justice in a few references.
Choosing a few samples for their relevance to the present discussion, we invite the interested reader
to consult [7],[15],[25], [26],[16] and the references therein to get a better sense of these technicalities.

Valuation and risk management of complex option positions require models for the time evolution
of implied volatility surfaces. [30] and [8] are early examples of attempts to go beyond static models,
but despite the fact that they consider only a cross section of the surface (say for K fixed), the works of
Schönbucher [32] and Schweizer and Wissel [34] are more in the spirit of the market model approach
which we advocate in this paper.

At any given time t, absence of (static) arbitrage imposes conditions on the surface of call option
prices: the surface {C̃t(τ,K)}τ,K should be increasing in τ , non-increasing and convex in K, it
should converge to 0 as K → ∞ and recover the underlying price S0 for zero strike when K → 0.
Because of the one-to-one correspondence between call prices and implied volatilities, these condi-
tions can be expressed in terms of properties of the implied volatility surface {Σ̃t(τ,K)}τ,K . How-
ever inverting Black-Scholes formula (2) is not simple and these conditions become rather technical.
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Moreover, when defining a market model by a set of stochastic differential equations, the first point
of the check list is to make sure that these properties guaranteeing the absence of static arbitrage are
preserved throughout the time evolution. So even before we consider the more complicated problem
of absence of dynamic arbitrage, this first point on the check list gives us enough reasons to search
for another way to capture the information contained in the surface of call option prices.

Throughout this paper we assume that the filtration F = FW is generated by a multidimensional
Brownian motion W = (W 1, ...,Wm). We assume that pricing is done by expectation with respect
to some pricing measure Q, which, however, doesn’t have to be unique. Since it is tradable, the
underlying St must be a local martingale, and the martingale representation theorem for Brownian
filtrations gives the existence of an adapted scalar process {σt}t≥0 and of an m-dimensional Wiener
process B = (B1, ..., Bm) such that FW = FB and

dSt = StσtdB1
t , S0 = s0.

In the absence of restrictive assumptions on the particular form of the spot volatility σt, pricing by
computing expectations of discounted payoffs is usually impractical. An alternative in the spirit of the
market models of the fixed income markets would be to postulate the dynamics of the set of option
prices explicitly, for example using a system of Itô’s stochastic differential equations. However, doing
so is likely to introduce arbitrage opportunities and identifying these arbitrage would require much
more than a mere modicum of care. As explained earlier, in order to rule out static arbitrages, at
any given time, the solution of the system of stochastic differential equations should give a surface
increasing in the variable T , convex and decreasing in the variable K and satisfying specific boundary
conditions. It seems to be quite difficult to identify stochastic dynamics preserving these properties,
let alone ruling out dynamic arbitrages! A model based on the simultaneous dynamics of all the call
option prices was considered in a recent paper [21] of Jacod and Protter. These authors work in the
more general setting of jump processes, and they study the problem of the completion of a market by
added derivative instruments. In so doing, they derive conditions very similar to our spot consistency
and drift conditions. See also [34] for a discussion of some of the difficulties associated with the
simultaneous dynamics of all the call prices.

Equivalently, one could encode all the option prices by the implied volatility surface Σt whose
definition was recalled earlier, and model its dynamics. But again, isolating tractable conditions
characterizing the absence of arbitrage is very technical and cumbersome. See for example [32] and
[34] for a discussion of the particular case when K is fixed.

For all these reasons, we choose to encode the market information (i.e. the option prices) with
the so-called local volatility surface. For each fixed time t ≥ 0, if we assume that C̃t(τ,K) is
differentiable in τ and twice differentiable in K, we define the local volatility at(τ,K) by

(3) ã2
t (τ,K) =

2∂τ C̃(τ,K)
K2∂2

KKC̃(τ,K)
, τ > 0,K > 0.

In this form, the definition was first given in 1994 by Dupire [14] who considered the case t =
0, assumed that the underlying was Markovian, and used the theory of the backward Kolmogorov
equation to show that the underlier necessarily satisfies a stochastic differential equation of the form

dSt

St
= a(t, St)dBt.
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Dupire’s idea was to deduce the dynamics of the underlier from a snapshot at time t = 0 of the
option prices quoted on the market, and use these dynamics to price exotic derivatives on the same
underlying. This very same idea appeared approximately at the same time in a work of Derman and
Kani in the context of tree models [11]. These groundbreaking works had a tremendous impact on the
life on equity desks where pricing and hedging of exotic options take place, and on the research on
the mathematical foundations of hedging and pricing of these options. However, this approach is not
without shortcomings. First the Markovian property of the underlier is highly unrealistic. Also, the
local volatility surface is changing with time, so in general it should be viewed as a function-valued
random process {ãt}t. In some sense, this is the starting point of the present paper.

If we turn definition (3) around, we see that any local volatility surface {ã(τ,K)}τ,K satisfying
some mild assumptions (say positivity and continuity for example) gives a set of option prices as a
solution of the following initial value problem.

(4)
{

∂τ C̃(τ,K) = 1
2K2ã2(τ,K)∂2

KKC̃(τ,K), τ > 0, K > 0
C̃t(0,K) = (St −K)+.

It is important to stress the fact that the four properties which we articulated for the absence of static
arbitrage are, in the local volatility framework, encapsulated in the non-negativity of the diffusion
coefficient (τ,K) ↪→ ã2

t (τ,K).
As we already mentioned, Schönbucher and Schweizer and Wissel have argued that the implied

volatility was not the right code-book for equity market models (see [32] and [34]), and in the simpler
case of a cross section they work instead with the term structure of volatility for a fixed option. Our
point of view is to follow the spirit of the approach advocated by Schönbucher in the case of credit
portfolios [33]. In this approach, using the Breeden-Litzenberger trick, the market prices are put in
correspondence with a set of marginal distributions, which is in turn captured by a Markov-martingale
having these distributions as marginals. Defining a dynamic model is then done by prescribing a time
evolution for this Markov martingale. In the case of the CDO markets, this Markov martingale is a
finite state non-homogeneous Markov process with values in the set of possible levels of loss, while
here it is a non-homogeneous diffusion in the strike variable. Note that the classical HJM model is
included in this approach, the state space of the Markov martingale being a singleton !!! The reader
interested in more information on this approach is referred to the survey article [6].

It seems that the terminology local volatility is due to Derman and Kani who studied it in [12] in
a paper mostly known for its analysis of tree models. In this work, the authors discuss informally
arbitrage-free dynamic models for the local volatility, exactly in the same spirit as the present paper.
However, here we develop the program they outline by providing rigorous proofs, new formulae and
numerical examples. Also, we obtain different no-arbitrage conditions.

We conclude this introduction with a short summary of the contents of the paper.
In Section 2 we define the time evolution of the (stochastic) volatility surface at( · , · ) by means of
a family of Itô’s stochastic differential equations. Recall that for each time t, the data encapsulated
in the surface at( · , · ) give the surface of option prices Ct( · , · ) by solving the boundary problem
(4). Section 3 addresses the obvious issue of the probabilistic characterization of these solutions.
Naturally, the individual call prices Ct(T,K) are expected to be semi-martinales in t. Strangely
enough, we could not find a simple proof of this plain fact. Our proof is rather lengthy and technical,
and for this reason, the details are postponed to a couple of appendices at the end of the paper.
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The dynamics of the local volatility imply specific dynamics for the set of option prices. One of
the thrusts of the paper is to derive necessary and sufficient conditions which guarantee that these
dynamics do not produce arbitrage opportunities. We derive such conditions in Section 4. These
conditions turn out to be analogous to the drift restriction and short rate specification of the classical
Heath-Jarrow-Morton theory (see [6] and [11] for an analog in a similar setup). The following Section
5 characterizes the Markov spot models as those with local volatility bounded variations dynamics.
Next, Section 6 provides a new expression for the local volatility surfaces of stochastic volatility
models. This expression is especially well suited to Monte Carlo computations. We use intuition
based on formulae derived in Section 6 to define a parametric family of local volatility surfaces
in Section 7. Even though we believe that, like in the case of the classical HJM models for the
bond markets, generic parametric families of local volatility surfaces will not be consistent with the
restrictions of the no-arbitrage dynamics (see for example [18] for the classical case), we illustrate
the potential usefulness of such parametric families in the analysis of real data. Finally, Section 8
considers the problem of hedging in the framework of the dynamic local volatility stochastic models
considered in the paper.

Most of the results of the paper were announced in [6] where the interested reader will find a
non-technical introduction to dynamic market models in the form of a survey.

2. MODEL SETUP

In this section we mostly work with the variables τ and x = log K. With this choice, the partial
differential equation (4) becomes uniformly parabolic

(5) ∂τu(τ, x) =
1
2
ã2

t (τ, e
x)
(
∂2

xxu(τ, x)− ∂xu(τ, x)
)
.

We know that this initial value problem is well-posed and has a classical fundamental solution. We
perform the same change of variables in the option prices by defining the function (τ, x) ↪→ Ĉ(τ, x)
by:

Ĉ(τ, x) = C̃(τ, ex) and â(τ, x) = ã(τ, ex) τ ≥ 0, x ∈ R.

With this notation, the equation for option prices becomes

(6)

{
∂τ Ĉt(τ, x) = 1

2 â2
t (τ, x)

(
∂2

xxĈt(τ, x)− ∂xĈt(τ, x)
)

, τ > 0, x ∈ R
Ĉt(0, x) = (St − ex)+

We are now ready to postulate the market dynamics. Under Q our model is given by the following
system of stochastic differential equations{

dSt = StσtdB1
t , S0

dâ2
t (τ, x) = â2

t (τ, x)[α̂t(τ, x)dt + β̂t(τ, x) · dBt, ] â2
0(τ, x)

where, for each fixed τ > 0 and x ∈ R, the processes α̂(τ, x) = {α̂t(τ, x)}t and β̂(τ, x) =
{β̂t(τ, x)}t as well as the process σ = {σt}t are adapted to the filtration F = FB . In addition,
we will require that the following regularity assumptions are satisfied:

(1) For any t > 0 it holds that E
∫ t
0 S2

uσ2
udu < ∞.

(2) For each fixed τ > 0 and x ∈ R, α and β have continuous derivatives of order one in τ , of
order five in x, which are adapted continuous processes in t.
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(3) Almost surely for any t ≥ 0 and T > 0 there exists λ∗ > 0, such that

inf
τ∈(0,T ], x∈R, u∈[0,t]

â2
u(τ, x) ≥ λ∗

and
sup

τ∈(0,T ], x∈R

∣∣∂τ â
2
t (τ, x)

∣∣ < ∞.

(4) There exist λ1(t) and λ2(t), nonnegative adapted processes, with E
∫ t
0 λ5

2(s)e
cλ1(s)ds < ∞

for any c ∈ R. Such that, almost surely for all t ≥ 0, τ > 0 and x ∈ R∣∣∣∂k
xk â2

t (τ, x)
∣∣∣ ≤ λ1(t) k = 1, 2∣∣∣∂k

xk â2
t (τ, x)

∣∣∣ ≤ λ2(t) k = 0, 3, 4, 5.

(5) Almost surely for all τ > 0 and x ∈ R∣∣∣e−|x|∂k
xk β̂t(τ, x)

∣∣∣+ ∣∣∣e−|x|α̂t(τ, x)
∣∣∣ ≤ λ2(t), k = 0, 1, 2.

The first assumption guarantees that S is a martingale. It will play an important role in some of the
proofs. The second assumption, together with Exercise 3.1.5 p.78 of Kunita’s book [23], implies that
â2 has a modification that is smooth enough in (τ, x). The third assumption guarantees the existence
of the fundamental solution of (6) as a well-behaved random process in t. Finally, assumptions (4)
and (5) are purely technical.

If we want to use the model specified above by a continuum of Itô’s stochastic differentials for
simulation purposes, we have to specify the stochastic spot volatility process σ, the random fields α
and β, infer the values of S0 and â2

0 from observed prices, and only then simulate the sample paths of
underlying stock price St and its local volatility surface â (which in turn will give us the sample paths
of option prices). However, the main result of the paper is that if we want to avoid arbitrage, the only
parameter to be specified is β, all the other specifications will follow.

3. SEMI-MARTINGALE REPRESENTATION OF THE OPTION PRICES

The goal of this section is to show that for each fixed τ > 0 and x ∈ R, the option price process
Ĉ(τ, x) defined for each fixed t, as the solution in τ and x of the initial value problem (6) is a semi-
martingale in t. This yields the same result for C̃(τ,K) for t > 0, and C(T,K) for t ∈ [0, T ]. These
results are based on two auxiliary lemmas. Even though the results of these lemmas are expected to
hold, especially under the smoothness assumptions made above, their proofs are quite lengthy and
technical. So in order not to disrupt the flow of the paper, we state them without proof, postponing
the gory details to appendices at the end of the paper.

Using the notation

Dx :=
1
2
∂2

xx − ∂x and Lx := â2
t (τ, x)Dx

equation (6) becomes {
∂τ Ĉ(τ, x) = LxĈ, τ > 0, x ∈ R
Ĉ(0, x) = (S − ex)+

.
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Our first step is to smooth the initial condition with an approximate identity. We introduce ϕ(x) ∈
C∞

0 (R) such that
(1) ϕ(x) ≥ 0;
(2) ϕ(x) = 0 for |x| ≥ 1;
(3)

∫
R ϕ(u)du = 1;

(4)
∫ 1
−∞

∫ x
−∞ ϕ(y)dydx = 1.

Then we set

F (x) =
∫ x

−∞

∫ y

−∞
ϕ(z)dzdy,

and for each ε > 0 we define Fε(x) by

Fε(x) = εF
(x

ε

)
,

so that F0(x) = x+. Now, consider the solution Ĉε of the initial value problem

(7)
{

∂τ Ĉ
ε = LxĈε, τ > 0, x ∈ R

Ĉε(0, x) = Fε(S − ex).

The purpose of the next lemma is to prove that, as a process in t, the solution is a semi-martingale.

Lemma 1. There exist predictable processes {µ̂ε
t (τ, x)}t and {ν̂ε,i

t (τ, x)}t for i = 1, · · · ,m with
values in C1,2(R+ × R), such that for any (t, τ, x)

Ĉε
t (τ, x) = Ĉε

0(τ, x) +
∫ t

0
µ̂ε

u(τ, x)du +
∫ t

0
ν̂ε

u(τ, x) · dBu

holds Q-a.s..

The proof of this result is given in the first part of Appendix A. Once we know that the prices
Ĉε

t (τ, x) of options with smoothed pay-offs are semi-martingales, we show that, when ε ↘ 0, the
semi-martingale property is preserved.

Lemma 2. There exist predictable processes {µ̂t(τ, x)}t and {ν̂i
t(τ, x)}t for i = 1, · · · ,m with

values in C1,2(R++ × R), such that for any (t, τ, x)

Ĉt(τ, x) = Ĉ0(τ, x) +
∫ t

0
µ̂u(τ, x)du +

∫ t

0
ν̂u(τ, x) · dBu

holds Q-a.s..

The proof is given in the second part of Appendix A. We conclude this section with two more technical
results which will be needed in the proof of the main result of the paper.

Proposition 1. For any fixed t > 0 and compact K ⊂ R we have:

lim
τ↘0

E
∫
K

(∫ t

0
(ν̂u(τ, x)− ν̂u(0, x)) · dBu

)2

dx + E
∫
K

(
Ĉt(τ, x)− (St − ex)+

)2
dx = 0.

The proof of this result is given in the first part of Appendix B.
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Proposition 2. Q - almost surely, for any t > 0 and h ∈ C∞
0 (R), we have

lim
τ↘0

∫
R

h(x)µ̂t(τ, x)dx =
1
2
Stσ

2
t h(log St).

The proof of this result is given in the second part of Appendix B.

4. ABSENCE OF ARBITRAGE

Since the stock price process is already assumed to be a local martingale under the pricing measure,
in the present context, absence of arbitrage merely means that for each fixed strike K > 0 and for
each fixed date of maturity T > 0, the option prices processes

{Ct(T,K)}t∈[0,T ) = {Ĉt(T − t, x)}t∈[0,T )

are local martingales. The following theorem addresses this problem. It is the main thrust of the
paper.

Theorem 1. Absence of arbitrage is equivalent to the following conditions being satisfied a.s. for all
t > 0, τ > 0, x ∈ R:

Drift restriction:

(8) α̂t +
d
dt〈log â2

t , DxĈt〉
DxĈt

= ∂τ log â2
t

Volatility specification:

(9) â2
t (0, log St) = σ2

t

Remarks 1. The drift condition (8) can be expressed in a more convenient form, especially when it
comes to numerical implementation:

α̂ +
β̂ ·Dxν̂

DxĈ
= ∂τ log â2

where ν̂ is the volatility in the semi-martingale decomposition of the call price process, as given for
example by the solution of the system of partial differential equations (48).
2. We can also rewrite (8) in the way it was originally touted by Derman and Kani in [12]. If we
plug in (8) the representation of ν̂(τ, x) in terms of p̂ and q̂ (the fundamental solutions of (5) and (42)
respectively), we obtain

α̂(τ, x) +
∑m

i=1 β̂i(τ, x)
∫

R
∫ τ
0 â2(u, y)β̂i(u, y)q̂(0, log S;u, y)Dy q̂(u, y; τ, x)dudy

q̂(0, log S; τ, x)

+ Sσ
β̂1(τ, x)∂S q̂(0, log S; τ, x)dy

q̂(0, log S; τ, x)
= ∂τ log â2(τ, x).

This is essentially, after changing variables from the couple (”maturity”,”strike”) used by Derman and
Kani in [12], to the couple (”time-to-maturity”,”log-strike”) used here, the drift condition proposed
by Derman and Kani. However, the third term of the above left hand side seems to be missing in [12]!

Proof:
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First, we notice that (8) is well defined since DxĈ stays positive because of the maximum prin-
ciple applied to the fundamental solution of a uniformly parabolic initial value problem. From the
generalized Itô rule (see for example Theorem 3.3.1 of [23]) we know that, for any T > 0 and x ∈ R,
the process {Ĉt(T − t, x)}t∈[0,T ) is a semi-martingale with the following decomposition

(10) dĈt(T − t, x) =
(
µ̂t(T − t, x)− ∂τ Ĉt(T − t, x)

)
dt + ν̂t(T − t, x) · dBt

Proof of the ”only if” part. Assume that {Ĉt(T − t, x)}t∈[0,T ) is a martingale for every fixed T > 0
and x ∈ R. Then

dĈt(T − t, x) = ν̂t(T − t, x) · dBt

and, from the generalized Itô formula

d(â2
t (T − t, x)) =

(
â2

t (T − t, x)α̂t(T − t, x)− ∂τ â
2
t (T − t, x)

)
dt + â2

t (T − t, x)β̂t(T − t, x) · dBt

Recall that, because of the defining relationship between local volatility and call prices we have a.s.

(11) â2
t (T − t, x) ·

(
∂2

xx − ∂x

)
Ĉt(T − t, x) = 2∂τ Ĉt(T − t, x),

and from Exercise 3.1.5, 78, of Kunita’s book [23], we know that
(
∂2

xx − ∂x

)
Ĉt(T − t, x) and

∂τ Ĉt(T − t, x) are local martingales as processes in t. Therefore, the drift on the right side of (11) is
zero. Writing that the left side is zero as well we get:

d
(
â2

t (T − t, x) ·DxĈt(T − t, x)
)

t

=
(
â2

t (T − t, x)α̂t(T − t, x)− ∂τ â
2
t (T − t, x)

)
DxĈt(T − t, x)dt

+
(

∂

∂t
〈â2

t (T − t, x), DxĈt(T − t, x)〉
)

dt + (...) · dBt

This yields (8). Now, fix some test function h ∈ C∞
0 (R), denote by Λ(y) the local time of S at y,

and, from Proposition 1, we have:(
E
∫

supp(h)

(∫ t

0
µ̂u(τ, x)du− Λ(ex)

)2

dx

)1/2

=

(
E
∫

supp(h)

(
Ĉt(τ, x)− (St − ex)+ −

∫ t

0
(ν̂u(τ, x)− ν̂u(0, x)) · dBu

)2

dx

)1/2

≤

(
E
∫

supp(h)

(∫ t

0
(ν̂u(τ, x)− ν̂u(0, x)) · dBu

)2

dx

)1/2

+

(
E
∫

supp(h)

(
Ĉt(τ, x)− (St − ex)+

)2
dx

)1/2

which tends to 0 as τ ↘ 0. From this we conclude that there exists a sequence τn → 0, such that
almost surely

(12) limn→∞
∫
supp(h)

(∫ t
0 µ̂u(τn, x)du− Λt(ex)

)2
dx = 0
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Recall that, since
(
Ĉt(T − t, x)

)
t∈[0,T )

is a local martingale for any T > 0, its drift is zero. So using

(10), we can conclude that

(13) µ̂u(τn, x) = ∂τ Ĉu(τn, x) =
1
2
â2

u(τn, x)DxĈu(τn, x),

and from (12) and (13) we have, almost surely for any t and h ∈ C∞
0 (R)

0 = lim
n→∞

∫
R

h(x)
(

Λt(ex)−
(

1
2

∫ t

0
â2

u(τn, x)DxĈu(τn, x)du

)
dx

)
=

∫
R

h(x)Λt(ex)dx− 1
2

lim
n→∞

(∫ t

0

∫
R

h(x)â2
u(τn, x)DxĈu(τn, x)dxdu

)
.

Now, using the definition of the local time, and dominated convergence, we get

1
2

∫ t

0
h(log Su)Suσ2

udu− 1
2

∫ t

0
lim

n→∞

(∫
R

h(x)â2
u(τn, x)DxĈu(τn, x)dx

)
du

=
1
2

∫ t

0
h(log Su)Suσ2

u − h(log Su)Suâ2
u(0, log Su)du

which holds for any t > 0. The above integrand is a.s. continuous, therefore, it is identically equal
to zero. And since this is true for any h ∈ C∞

0 (R), we conclude that â2
t (0, log St) = σ2

t which
completes the proof of (9).

Proof of the ”if” part. From Lemma 1 and Lemma 2 of the Section 3 above, we know that {Ĉt(T −
t, x)}t∈[0,T ) is an Itô process. Let us denote its drift at time t by v̂t(T−t, x) . Smoothness of Ĉt(τ, x),
µ̂t(τ, x) and ν̂t(τ, x) yields that v̂t(τ, x) ∈ C1,2(R++ × R+). Then, from (8), by differentiating (11)
with respect to t (just like it was done in the first part of the proof), we obtain:

(14) ∂τ v̂t(τ, x) =
1
2
â2

t (τ, x)Dxv̂t(τ, x), τ > 0, x ∈ R

which holds almost surely for all t > 0. Since

(15) v̂t(τ, x) = µ̂t(τ, x)− ∂τ Ĉt(τ, x)

for any test function h ∈ C∞
0 (R) we have∫

R
h(x)v̂t(τ, x)dx =

∫
R

h(x)µ̂t(τ, x)dx−
∫

R
h(x)∂τ Ĉt(τ, x)dx

As τ → 0, the first term in the above right hand side converges to 1
2Stσ

2
t h(log St) because of Propo-

sition 2 of Section 3 above. Moreover∫
R

h(x)∂τ Ĉt(τ, x)dx =
1
2

∫
R

h(x)â2
t (τ, x)exq̂t(0, log St; τ, x)dx

→ 1
2
Sth(St)â2

t (0, St)

=
1
2
Stσ

2
t h(log St).
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This proves that, almost surely for any t, v̂t(τ, x), as function of x, converges weakly to 0 as τ → 0.
Then, from the uniqueness of the weak solution of (14) (see for example, [13]), we conclude that, for
any τ > 0, v̂t(τ, · ) ≡ 0 in Ł2

loc(R) sense. But since v̂t(τ, x) is continuous, it is equal to zero for any
τ > 0 and x ∈ R.

This implies that
(
Ĉt(T − t, x)

)
t∈[0,T )

is a local martingale in t for any T > 0 and x ∈ R. But

since Ĉt ≤ St, it is square integrable, and therefore every (Ĉt(T − t, x))t∈[0,T ) is a martingale. This
completes the proof of the theorem.

Implementation. We are now in a position to give the specifics of the pricing Monte Carlo algorithm
introduced earlier:

(1) The last theorem shows that the only free parameter in the model is {β̂t(τ,K)}t≥0. It is
chosen from intuition and historical observations not already contained in the set of observed
call option prices.

(2) We use the current stock price for S0, and the call option prices to deduce the initial local
volatility surface. Many methods have been proposed to do that, ranging from parametric
and non-parametric statistical methods (see for example [17] and the references therein) and
smoothing by optimization and partial differential equations (see for example [1]). We revisit
this issue later in the paper.

(3) We simulate sample paths of St and â2
t as follows. Given â2

t and β̂t, we compute α̂t from the
no-arbitrage condition (8) and σt from the consistency condition (9). Then we use α̂t and β̂t

to find â2
t+∆t and use σt to find St+∆t by a single step in a forward plain Euler’s scheme, and

we iterate. Voila!
This algorithm will give us arbitrage-free dynamics of the option prices together with the stock. It
will allow us to calculate the prices of other derivatives that use the stock and/or the dynamically
modeled option prices as underlying.

5. EXAMPLES

This section provides a couple of simple consequences of the no-arbitrage condition derived above.

5.1. Bounded Variations Dynamics and Markovian Spot Models. Let us first consider the sim-
plest possible model of local volatility stochastic dynamics by assuming that {β̂t(τ, x)}t≥0 is identi-
cally zero, i.e. β̂ ≡ 0. Obviously, this corresponds to assuming that the time evolution of the local
volatility surface is of bounded variations. Under this assumption, the no-arbitrage drift condition (8)
becomes

∂τ α̂t(τ, x) = α̂t(τ, x) = ∂τ log ã2
t (τ, x)

which, for each fixed strike K = ex, is a plain hyperbolic transport equation whose solutions are
given by traveling waves. Consequently

â2
t (τ, x) = â2

0(τ + t, x)

from which we conclude, using the consistency condition (9), that

σt = â0(t, St).

This above derivation proves the following aside:
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Proposition 3. The local volatility surface is a process of bounded variation if and only if it is the
shift of a fixed deterministic surface along the space-time underlying sample path, and the underlying
stock process is Markovian.

5.2. Case of Flat Surfaces. Let us now assume that the local volatility surface is only driven by
the second component of the Brownian motion, and from some instant of time t on, â2

t (τ, x) and its
diffusion term β̂2

t (τ, x) become flat (constant functions â2
t and β̂2

t of τ and x). Then we can solve (6)
and (48) explicitly, and the no-arbitrage drift condition (8) gives the following expression for the drift

α̂t(τ, x) = −‖β̂t‖2

(
(x− log St)2

â2
t

− 1−
√

τ

)
.

This is another instance of the fact that in the absence of arbitrage, the drift α̂ is determined by the
volatility structure β̂.

5.3. Random Scaling. Here we consider the case of a local volatility surface obtained by randomly
scaling a fixed deterministic surface.

Proposition 4. If â2
t (τ, x) = λtâ

2
0(τ, x) for some semi-martingale λ with the decomposition dλt =

αtdt+βt ·dBt, and some fixed deterministic initial surface â2
0, then absence of arbitrage implies that

λ is a deterministic function of the underlying stock.

In such a case, the setting of the proposition reduces to the simple constant local volatility model
discussed above. For the proof we assume in addition that â2

0 ∈ C3(R2), and that for any c > 0, the
order of growth of its derivatives is not more than ecx2

, on some strip [0, T ]× R.
If we multiply both sides of the no-arbitrage drift condition (8) by DxĈ and integrate with respect

to x, then the second term on the left side disappears since
∫

R Dxν̂dx = 0. This leaves us with:

α̂ =
∫

R
∂τ log â2

0(τ, x)q̂(0, log S; τ, x)dx,

and differentiating both sides with respect to τ and using the properties of the fundamental solution,
we obtain∫

R
∂ττ log â2

0(τ, x)q̂t(0, log S; τ, x)dx+
∫

R
∂τ log â2

0(τ, x)Dx

(
λtâ

2
0(τ, x)q̂t(0, log St; τ, x)

)
dx = 0.

Integrating by parts the second term and letting τ ↘ 0 we get:

∂ττ log â2
0(0, log St) + λtâ

2
0(0, log St)D∗

x∂τ log â2
0(0, log St) = 0

which proves that, excluding some degenerate cases, λt is a deterministic function of the underlying.

6. FROM STOCHASTIC TO LOCAL VOLATILITY: THE MARKOVIAN CASE

Although it is clear that all market models in which European call prices are semi-martingales
(sufficiently smooth in strike and maturity) are included in our framework, it is interesting to see how
the local volatility looks in some of the most popular models.

We consider stochastic volatility models in which the volatility process is Markovian with respect
to its own filtration and given by an Itô stochastic differential equation. Obviously, the Hull-White
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and Heston models are particular cases. Our goal is to exhibit generic properties of the local volatility
surface in these models. So we assume that

(16)

{
dSt = Strdt + Stσt

(√
1− ρ2dB1

t + ρdB2
t

)
, S0

dσt = f(t, σt)dt + g(t, σt)dB2
t , σ0

where {B1
t }t≥0 and {B2

t }t≥0 are independent Brownian motions, ρ ∈ [−1,+1], and f(t, x) and
g(t, x) satisfy the usual conditions which guarantee existence and uniqueness of a positive solution
to the above system. Notice that, contradictory to the convention used in this paper, we featured the
interest rate r in the model. This is to emphasize its role (or lack thereof) in the formula we derive in
this section.

Notice also that, for the purpose of this section we can limit ourselves to the case t = 0, and doing
so we are back to the static case considered originally by Dupire and Derman and Kani, and we can
use τ or T interchangeably, ignoring the tildes and hats on the coefficients. The goal of this section is
to state and prove a new expression for the local volatility of Markovian stochastic volatility models.

Proposition 5. In a stochastic volatility model (16), the local volatility surface is given at time t = 0
by the formula:

(17) a2(T,K) =
E
[

S̄T σ2
T

σ̄T
e−

d2
1(T,K)

2

]
E
[

S̄T
σ̄T

e−
d2
1(T,K)

2

]
where S̄T , σ̄T and d1(T, x) are defined in formulae (18), (19) and (22) below.

Proof:
Solving the system (16) for St we get:

St = S0 exp
(
−ρ

∫ t

0
σu

f(u, σu)
g(u, σu)

du + ρ

∫ t

0

σu

g(u, σu)
dσu

)
exp

(
rt− 1

2

∫ t

0
σ2

udu +
√

(1− ρ2)
∫ t

0
σudB1

u

)
.

For each t > 0 we define the quantities St and σt by

(18) St = S0 exp
(
−ρ2

2

∫ t

0
σ2

udu− ρ

∫ t

0
σu

f(u, σu)
g(u, σu)

du + ρ

∫ t

0

σu

g(u, σu)
dσu

)
and

(19) σt =

√
1
t

∫ t

0
σ2

udu.

Both quantities depend only on {B2
u}0≤u≤t. Moreover,

C(T,K) = E{(ST −K)+}(20)

= E

{(
ST exp

(
rT − (1− ρ2)

2
Tσ2

T +
√

(1− ρ2)
∫ T

0
σudB1

u

)
−K

)+
}

(21)
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so that, conditioning by {B2
u}0≤u≤t, we obtain

C(T,K) = E{BS(St, T,
√

(1− ρ2)σ̄T ,K)}

where the expectation is over the second Brownian motion {B2
t }t≥0, and where the Black-Scholes

call price BS(S, T, σ,K) was defined in (2). Itô’s rule gives

d BS(St, T,
√

(1− ρ2)σ̄T ,K) = Φ(d1)ST ρσT dB2
T − rKe−rT Φ

(
d1 −

√
T
√

1− ρ2σT

)
dT

+
1√

1− ρ2

ST σ2
T

σ̄T

1√
T

1
2
√

2π
e−

d2
1
2 dT

where d1 = d1(T,K) is defined in the usual way by:

(22) d1(T,K) =
log S̄T

K +
(
r + 1

2(1− ρ2)σ̄2
T

)
T√

1− ρ2σ̄T

√
T

.

Taking expectations on both sides and using Fubini’s theorem we obtain

∂T C(T,K) = −rKe−rT E
[
Φ
(
d1 −

√
T
√

1− ρ2σ̄T

)]
+

1√
1− ρ2

1√
T

1
2
√

2π
E
[
ST σ2

T

σ̄T
e−

d2
1
2

]
.

Repeated differentiations and uses of Fubini’s theorem give

∂KC(T,K) = −e−rT E
[
Φ
(
d1 −

√
T
√

1− ρ2σ̄T

)]
and

∂KKC(T,K) =
1

√
2π
√

1− ρ2
√

TK2
E
[
S̄T

σ̄T
e−

d2
1
2

]
which in turn gives the desired result since:

(23) a2(T,K) =
2(∂T C + rK∂KC)

K2∂KKC

Notice that formula (17) still contains expectations. However, these expectations are only over the
paths of the stochastic volatility σt (i.e. over the second Brownian motion {B2

t }t≥0), and in order to
implement this formula in Monte Carlo computations, we only need to simulate the (Markovian) paths
of σt. But the main strength of formula (17) is to have rid of the singularities in the numerator and
denominator. Such singularities would appear automatically if we were to try to use straightforward
Monte Carlo simulations. Finally, we notice that the expectations appearing in formula (17) can be
computed explicitly if the joint distribution of

(
σt,
∫ t
0 σ2

udu
)

is known. This is for example the case
in Heston and Hull-White models.

Figure 1 gives the plot of a typical local volatility surface in Heston’s model. It was computed by
Monte Carlo evaluation of the expectations appearing in formula (17). Artifacts due to inaccuracies
in the Monte Carlo evaluations can be seen on both sides of the surface.
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FIGURE 1. Typical local volatility surface in Heston’s Model

We used the values µ = 0.045, σ0 = 0.3, σ̂ = 0.2, k = 0.23, θ = 0.2 and ρ = −0.5 in the
stochastic system

(24)

{
dSt = µStdt + Stσt

(√
1− ρ2dB1

t + ρdB2
t

)
, S0

dσ2
t = k(θ − σ2

t )dt + σ̂σtdB2
t , σ0

7. A PARAMETRIC FAMILY OF LOCAL VOLATILITY SURFACES

Several non-parametric methods have been proposed to fit local volatility surfaces to actual option
data. See for example the books [1] by Achdou and Pironneau, and [17] by Fengler, and the references
therein. Building on the intuition developed in the previous section, we propose a simple parametric
family of surfaces for the same purpose of fitting a local volatility surface to observed market data.
Our family is parameterized by the 9 scalar parameters

Θ = (σ, η1, η2, θ1, θ2, p1, p2, s, µ)

satisfying the conditions

p1, p2 ≥ 0, p1 + p2 ≤ 1

θ1, θ2 ≥ 0

σ > 0, µ ≥ 0.
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We shall give the intuitive meaning of these parameters shortly. In the meantime, we introduce the
notation, for i = 1, 2

vi(τ) =

√
θi + (σ2 − θi)

1− e−ηiτ

ηiτ
, di(τ, x) =

s− x +
(
µ + 1

2v2
i (τ)

)
τ

√
τvi(τ)

,

and

η0 = 0, p0 = 1− p1 − p2, v0(τ) = σ, d0(τ, x) =
s− x +

(
1
2σ2 + µ

)
τ

σ
√

τ

We introduce the following collection of two-dimensional surfaces

(25) â2(Θ, τ, x) =

∑2
i=0 pi(θi + (σ2 − θi)e−ηiτ ) exp

(
−d2

i (τ,x)
2

)
/vi(τ)∑2

i=0 pi exp
(
−d2

i (τ,x)
2

)
/vi(τ)

The meaning of each of the parameters is as follows:
• s is the logarithm of the current stock price;
• σ is the spot volatility;
• µ is the drift of the stock process (most likely, the difference between interest rate and the

dividends payment rate);
• {ηi, θi}2

i=1 define scenarios for the volatility process;
• pi’s are the respective probabilities of these scenarios.

The parametric family considered in this section is not new. Local volatility surfaces of the form
(25) were introduced by Brigo and Mercurio in [3], [4], and by Brigo and collaborators in [31].
They described the local volatility surface corresponding to a stochastic volatility model in which the
volatility process is independent of the Brownian motion driving the dynamics of the stock price, and
can only take values in a finite set of deterministic functions σ1(t), σ2(t), ..., σm(t), with probabilities
p1, ..., pm. In this setting, clearly, the price of a European call option given by such a local volatility
surface is

C(Θ, τ, x) =
m∑

i=1

piBS(es, ex, τ,

√
1
τ

∫ τ

0
σ2

i (u)du, µ).

A family of this type with 3 constant volatility functions σi(t) was considered in [6]. But because
such surfaces are singular as τ ↘ 0, we consider here a different form of stochastic volatility sample
paths in this paper. We choose

σ2
i (t) = θi + (σ2 − θi)e−ηit, i = 0, 1, 2.

The motivation for this particular choice comes from our analysis of the Heston model in (23) with
parameters k and θ being random variables on a probability space Ω with three elements, Ω =
{ω0, ω1, ω2}, independent of (W 1,W 2), with Q(ω1) = p1, Q(ω1) = p2, and k(ωi) = ηi, θ(ωi) =
θi, i = 0, 1, 2. In this way, any surface from the proposed parametric family can be interpreted as a
limit of local volatility surfaces in the modified Heston model with σ̂ → 0.

Figure 2 gives the graph of a local volatility surface from the above family. It was obtained by least
squares fitting to the European call option prices quoted on the SP500 index on April 3rd, 2006. The
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parameter values produced by our least squares optimization are: σ = 0.16, η1 = 0.26, η2 = 0.21,
θ1 = 0.52, θ2 = 0, p1 = 0.26, p2 = 0.31 and µ = 0.045.

FIGURE 2. Local volatility surface from the parametric family introduced in this
section. It was fitted to S&P500 option prices on April 3rd 2006.

For the sake of comparison we give in Figure 3, the plot of a local volatility surface from a Heston
model with ρ = 0. Obviously, both local volatilities surfaces are monotone increasing with time to
maturity, and as functions of x, they are U -shaped and flattening at infinity.



LOCAL VOLATILITY DYNAMIC MODELS 19

FIGURE 3. Local volatility surface of a Heston model with ρ = 0 and the same
parameters as those obtained from the least squares fit to S&P 500 data above.

In order to introduce the dynamics of the local volatility surface, and also for the hedging purposes
discussed in the next section, we need to estimate β̂(τ, x). With this goal in mind, we propose a
parametric form for β̂(τ, x). Recall (25), and notice that if we pretend that the stochastic volatility
model producing the local volatility (25) is true, the process σ has almost surely finite variation. Then,
formally using Itô’s rule to compute dâ2

t (Θ, τ, x) |t=0, we obtain

(26) β̂(Θ, τ, x) =

∑2
i=0 pi

â2(Θ,τ,x)−θi−(σ2−θi)e
−ηiτ

√
τvi(τ)â2(Θ,τ,x)

di(τ, x) exp
(
−d2

i (τ,x)
2

)
/vi(τ)∑2

i=0 pi exp
(
−d2

i (τ,x)
2

)
/vi(τ)

which gives us a parametric family for β̂(τ, x). An example of such a surface from this parametric
family is given in Figure 4. It was produced using the same parameters as for Figure 3.
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FIGURE 4. Example of a surface from the parametric family identified for the diffu-
sion term in dynamic local volatility models.

It is instructive to compare this plot to the plot of the estimated surface β̂(τ, x) in a Hull-White
model where the volatility is modeled as a geometric Brownian motion given in Figure 5. Notice that,
despite the fact that these two surfaces clearly differ in scale, they share the same qualitative behavior:
for every fixed time to maturity, as functions of x they are close to being odd, and converging to zero
at infinity.

We introduced a parametric family for fitting the initial local volatility surface to observed option
prices. In addition, we proposed a parametric form for the vol-vol surface β which determines the
dynamics of the model. The forms of both families are motivated by properties of the popular sto-
chastic volatility models. So despite the fact that general dynamic local volatility models allow for â2

and β̂ of much greater generality than those coming from stochastic volatility models, a first approach
to dynamic local volatility modeling could use these parameterizations introduced in this section in
order to implement the models studied in this paper. We shall report on the results of this strategy in
a forthcoming paper.

8. HEDGING WITH DYNAMIC LOCAL VOLATILITY

Notice that everything that has been done so far, was done under a pricing measure Q, and there-
fore, did not really involve the dynamics under the real world measure P. However, except for some
almost sure properties, the analysis of dynamic hedges needs to be done under the real world mea-
sure, and we need new assumptions for that. So in this section, we assume that, under the real world
measure P:
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FIGURE 5. Diffusion surface β̂(τ, x) of the local volatility of a Heston model with
geometric Brownian motion as volatility.

(1) The stochastic process B which, as a Brownian motion under Q was driving most of the
stochastic differential equations so far, has locally bounded drift. In other words, under P,
Bt = At + Wt. Where At =

∫ t
0 budu, with the process ‖bt(ω)‖ bounded for all ω on any

finite interval of time, and Wt is a Wiener process under P.
(2) The underlying is an H2 semimartingale on any finite time interval, and all the regularity

assumptions made in Section 2 hold (this, together with the first assumption, will ensure that
the call prices are H2 semimartingales as well).

The dynamic local volatility models introduced in this paper were built under the assumption that
the prices of all the European call options were observable and that these options were available for
trading. But now that we understand what a no-arbitrage dynamic model means, after stating the
elements of such a model, we can consider the more realistic situation, where only finitely many
options can be traded liquidly. So, for the purpose of this last section we assume that at each time t,
the set of liquidly traded options available to the hedger is finite and we denote their values by

Ct = {Ĉj
t ; j = 0, 1, · · · , N}

where
Ĉj

t = 1[T 1
j ,T 2

j )(t)Ĉt(T 2
j − t, xj), j = 0, 1, · · · , N

and where T 1
j is the time of issuing of the corresponding call option, and T 2

j is its maturity time, exj

being its strike. The use of the indicator 1[ · , · ) can be viewed as a justification for the fact that the set
of options which we are using as hedging instruments do not change over time.
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This last section is concerned with the hedging of a contingent claim V with time of maturity T
and price process (Vt)t∈[0,T ] being aH2 semi-martingale, hedging being done by means of a portfolio
using the finite set of liquid European call options introduced above.

Definition 1. We call a trading strategy δ =
(
δ0
t , δ

1
t , ..., δ

N
t

)
t∈[0,T )

admissible, if δ is adapted to F
(which implies predictability, since F is generated by a Brownian motion), and is square integrable
with respect to the hedging instruments, i.e. δ ∈ (H2, C). We denote the set of all admissible strategies
with maturity T by A(T ).

Admissibility means that
(∫ t

0 δu · dCu

)
t∈[0,T )

is in H2. Recall that the model we consider is pos-

sibly incomplete and hedging does not necessarily coincide with replication. Therefore, we need to
define the concept of hedging in our setting.

Definition 2. A trading strategy δ̄(V ) =
(
δ̄0
t (V ), δ̄1

t (V ), ..., δ̄N
t (V )

)
t∈[0,T )

is a local hedging strategy

for the contingent claim V with maturity T if it is admissible, i.e. if δ̄(V ) ∈ A(T ), and if for almost
every t ∈ [0, T ), it holds

δ̄(V ) = arg inf
δ∈A(T )

∂̄+

∂u

[
EP

t

(
Vt+u − Vt −

∫ t+u

t
δv · dCv

)2
]

u=0

where for any real valued function f of a real variable we use the notation ∂+
x for

∂+
x f(x) = ess lim sup

∆x↘0

f(x + ∆x)− f(x)
∆x

.

Remark 1. It would be more natural to look for the optimal hedging strategy only among those δ for
which (

Vt − V0 −
∫ t

0
δv · dCv

)
t∈[0,T )

is a martingale. Then local hedging would become global in the sense of the following definition.

Definition 3. The trading strategy δ̃(V ) =
(
δ̃0
t (V ), δ̃1

t (V ), ..., δ̃N
t (V )

)
t∈[0,T )

is said to be a global

hedging strategy for the contingent claim V with maturity T if it is admissible, and, for almost every
t ∈ [0, T ), it holds

δ̃(V ) = arg inf
δ∈A(T )

EP
(

Vt − V0 −
∫ t

0
δv · dCv

)2

However, in general, we cannot find an admissible trading strategy δ̃ attaining the above infimum.
Thus, we concentrate on the problem of local hedging and we show how to find for example, the local
hedging strategy for a non-liquid call option.

Proposition 6. For any European call option with maturity T and strike K = ex, there exists a local
hedging strategy δ̄t(T, x). At every time t it can be computed as a solution of the finite dimensional
quadratic optimization problem

(27) min ‖Htδt − Yt‖2
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where

Yt =

 ν̂1
t (T − t, x)

...
ν̂m

t (T − t, x)

 , Ht =


Stσt 1[T 1

1 ,T 2
1 )(t)ν̂1

t (T 2
1 − t, x1) · · · 1[T 1

N ,T 2
N )(t)ν̂1

t (T 2
N − t, xN )

0 · · · · · · · · ·
...

...
...

...
0 1[T 1

1 ,T 2
1 )(t)ν̂m

t (T 2
1 − t, x1) · · · 1[T 1

N ,T 2
N )(t)ν̂m

t (T 2
N − t, xN )


Remarks 1. Recall that ν̂t(τ, x) is the diffusion vector of the Itô’s decomposition of the semi-
martingale Ĉt(τ, x) and that it can be computed by solving the system of partial differential equations
(48):
2. At each time t, the optimization problem is a standard finite dimensional least squares problem
which can be solved easily. If H̃t denotes the matrix consisting of the basis of the columns of Ht,

then the solution δ̄t is gven by
(
H̃T

t H̃t

)−1
H̃tYt.

Proof:
Let the price of non-liquid option at time t be Ĉt(T − t, x). For any given admissible trading

strategy δ we define

Xu = Ĉt+u(T − (t + u), x)− Ĉt(T − t, x)−
N∑

j=0

∫ t+u

t
δj
vdĈj

v

=
m∑

i=1

∫ t+u

t
ηi

vdAi
v +

m∑
i=1

∫ t+u

t
ηi

vdW i
v

where

η1
v = ν̂1

v (T − v, x)− δ0
vSvσv −

N∑
j=1

1[T 1
j ,T 2

j )(v)δj
vν̂

1
v (T 2

j − v, xj)

and

ηi
v = ν̂i

v(T − v, x)−
N∑

j=1

1[T 1
j ,T 2

j )(v)δj
vν̂

i
v(T

2
j − v, xj), i = 2, ...,m.

Notice that we obtained the semi-martingale decomposition Xu = Ãu + Ñu, where Ã is the finite
variation component of X , and Ñ is the local martingale, and Ã0 = Ñ0 = 0. Notice also that due
to the assumptions made at the beginning of this section, and the very definition of the admissible
strategies, we have that (Xt)t∈[0,T ) ∈ H2.

(28) X2
u = Ã2

u + 2ÃuÑu + Ñ2
u

Using Ãu =
∑m

i=1

∫ t+u
t ηi

vdAi
v, we estimate the first term in (28).

(
EPÃ2

u

)1/2
≤

m∑
i=1

(
EP
(∫ t+u

t
ηi

vb
i
vdv

)2
)1/2

≤
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m∑
i=1

(
EP
∫ t+u

t
|bi

v|dv

∫ t+u

t
ηi

v
2|bi

v|dv

)1/2

≤ c ·
√

u ·
m∑

i=1

(
EP
∫ t+u

t
ηi

v
2
dv

)1/2

The last estimate implies that Ã2
u/u converges to zero in L1, as u → 0. Clearly, it also does so in

almost sure sense. Thus

(29) lim
u→0

EP
t Ã2

u

u
= 0

We estimate the second term by

EPÃuÑu ≤
(
EPÃ2

u

)1/2 (
EPÑ2

u

)1/2
=
(
EPÃ2

u

)1/2
(

EP
m∑

i=1

∫ t+u

t
ηi

v
2
dv

)1/2

.

Obviously,
∫ t
0 EPηi

v
2
dv is differentiable in almost every t, so if we consider any such t, then, as u → 0

EPÃuÑu

u
≤

(
EP Ã2

u

u

)1/2(∑m
i=1

∫ t+u
t EPηi

v
2
dv

u

)1/2

→ 0

which implies, as before, that

(30) lim
u→0

EP
t ÃuÑu

u
= 0.

Finally, the last term in (28) gives:

lim sup
u→0

EP
t Ñ2

u

u
= lim sup

u→0

1
u

EP
m∑

i=1

∫ t+u

t
ηi

v
2
dv

due to the definition of η

m∑
i=1

∫ t+u

t
ηi

v
2
dv =

∫ t+u

t

ν̂1
v (T − v, x)− δ0

vSvσv −
N∑

j=1

I[T 1
j ,T 2

j )(v)δj
vν̂

1
v (T 2

j − v, xj)

2

+

m∑
i=2

ν̂i
v(T − v, x)−

N∑
j=1

I[T 1
j ,T 2

j )(v)δj
vν̂

i
v(T

2
j − v, xj)

2

dv

Notice that, for fixed (ω, v), the integrand is minimized by δ̄v specified in the proposition. Clearly, δ̄ is
an adapted process. Also,

(
Htδ̄t

)
t∈[0,T )

is a square integrable process, since, for every t, it is bounded

by ‖Yt‖, as projection of Yt. It follows that
∫ t
0 δu · dCu is in H2, and therefore δ̄ is admissible.

Now, denote η, corresponding to δ̄, by η̄. It is clear that for any other admissible strategy δ, we
have

lim sup
u→0

1
u

EP
t

m∑
i=1

∫ t+u

t
η̄i 2

v dv ≤ lim sup
u→0

1
u

EP
t

m∑
i=1

∫ t+u

t
ηi

v
2
dv

almost surely, which completes the proof.
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Remark that for any portfolio of call options (i.e. a finite linear combination
∑M

k=1 pkĈt(T̂ k −
t, xk)), the hedging strategy is clearly given by Proposition 6, with the same Ht and

Yt =
M∑

k=1

pkY
k
t

where

Y k
t =

 ν̂1(T̂ k − t, x̂k)
...

ν̂m(T̂ k − t, x̂k)


It is also easy to see that any measurable payoff F (ST ) is in the closure (for example, in L1

sense) of the linear combinations of (ST −K)+K≥0. Thus, under some integrability conditions, we
can find the hedge of contingent claim with payoff F (ST ) as a limit of hedging strategies for linear
combinations of vanilla options. And doing this will only change the projection vector Y , which now
will be a limit of the vectors corresponding to linear combinations of vanilla options.

Proposition 6 gives a local hedging strategy but it does not address how well or how poorly such
a strategy performs in global (replication) sense. In particular, what can we say about the terminal
value of the hedging portfolio? For a partial answer to this difficult question, we assume for example
that the contingent claim V is a linear combination of vanilla options with the same maturity, then
we can use the following inequality which is a straightforward application of Theorem 2 p. 252 in
Protter’s book [28].

EP

[
sup

t∈[0,T ]

(
Vt − V0 −

∫ t

0
δv · dCv

)2
]

≤ c ·

((
EP
∫ T

0
((Htδt − Yt) · bt)

2 dt

)1/2

+
(

EP
∫ T

0
‖Htδt − Yt‖2 dt

)1/2
)2

≤ c · EP
∫ T

0
‖Htδt − Yt‖2 dt

Where the last constant depends only on the ess supω, t∈[0,T ] ‖bt(ω)‖ (recall that b is the drift of B
under P). Thus, we can see that solving the minimization problem in Proposition 6 at every time t,
will give us an idea of how low the P&L may fall during the life of the portfolio.

9. CONCLUSION

In this paper, we propose a new market model for the equity markets. Its originality is to be based
on the prescription of stochastic dynamics for the local volatility surface. We argue that the local
volatility surface is a better description of the state of the market than the call option prices surface
and the implied volatility surface. The main thrust of the paper is a characterization of the absence
of arbitrage by means of a drift condition and a spot consistency condition in line with the original
Heath-Jarrow-Morton absence of arbitrage condition. As a by-product of our results, we characterize
the Markov spot models as those with local volatility bounded variations dynamics, shedding some
new light on the original works of Dupire and Derman and Kani who introduced the concept of
local volatility surface in the static context. We also provide a new expression for the local volatility
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surfaces of stochastic volatility models, we introduce a parametric family of local volatility surfaces,
and we demonstrate that it is well suited to the analysis of actual financial data. Finally, we consider
the problem of hedging in the framework of market models for the local volatility surface.

APPENDIX A

Proof of Lemma 1.
Fix some t̄ and τ̄ , x̄, and consider only t ∈ [0, t̄], τ ∈ [0, τ̄ ]. In the following, we often omit the

subscript t in expressions that are dynamic due to the fact that most of the time t is actually fixed.
First consider the explicit Euler finite difference scheme for (7). Choose some small τ, h > 0, and

define Λ(τ, h) := {(τn, hk) | n ∈ N∗, k = Z} for the two dimensional lattice with mesh(Λ) =
max(τ, h) where τ and h are always chosen in such a way that the lattice contains (τ̄ , x̄).

Let ηh and η−h denote the right and left shift operators (along the x axis) respectively, and

dh =
1
h

ηh, d−h =
1
h

η−h

Dh =
1
2

(d−hdh − dh)

Lh = â2Dh

be the discrete analogues of ∂x, Dx and Lx respectively. Whenever we have a function f defined on
the lattice, we use the notation fn,k for f(τn, hk). We call C̄(Λ) the solution of the explicit finite
difference scheme for (7), i.e.

(31)
{

C̄n+1,k = C̄n,k + τLhC̄n,k, n ∈ N∗, k = Z
C̄0,k = Fε(S − ehk), k = Z.

From now on, we consider only those (τ, h) for which the ratio τ/h2 is small enough, and therefore,
the above scheme is stable. We fix Λ and (n, k). Since Λ does not depend upon t, C̄ε

n,k is an adapted
process in t ∈ [0, t̄]. It is clearly an Itô process, as a polynomial of Itô processes. We write its
decomposition as

d
(
C̄n,k(Λ)

)
t
= µ̄n,k,t(Λ)dt + ν̄n,k,t(Λ) · dBt.

Using the Ito’s formula and varying (n, k), we conclude that the elements of this decomposition
satisfy the following equations, a.s. for every t ∈ [0, t̄]

(32)


ν̄i

n+1,k = ν̄i
n,k + τ

h2 Lhν̄i
n,k + τ

h2 β̂i
n,kLhC̄n,k, i = 1, ...,m

ν̄1
0,k = SσF

′
ε(S − exp(hk))

ν̄i
0,k = 0, i = 2, ...,m

and

(33)
{

µ̄n+1,k = µ̄n,k + τ
h2 Lhµ̄n,k + τ

h2 α̂n,kLhC̄n,k + τ
h2 β̂n,k · Lhν̄n,k

µ̄0,k = 1
2S2

t σ2
t F

′′
ε (S − exp(hk)).
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Now let us consider (31). Using the smoothness of the initial condition and of the coefficient â2(T, x),
and following the lines of [20] p. 230-233, we derive the following estimate

|‖DhC̄‖| ≤ c · ec·|‖∂2
xâ2‖|

where |‖.‖| is the uniform norm over the strip [0, T̄ ] × R. As usual c denotes a constant which may
vary from line to line, but which does not dependent upon Λ, t and ω. In a similar manner we obtain

(34) |‖dk
hDhC̄‖| ≤ c · ec·

∑2
i=1 |‖∂i

xâ2‖| ·

1 +

(
k+2∑
i=2

|‖∂i
xâ2‖|

)k
 k = 0, 1, 2, 3

The last estimate, together with Arzela-Asccoli’s theorem (see, for example, [20] p. 230-233), implies
that C̄ converges to Ĉε, in the norm |‖.‖|, along an increasing sequence of lattices ΛN (i.e. ΛN ⊂
ΛN+1), whose meshes decrease to 0. Moreover, the convergence holds as well for the first two
derivatives of C̄ and Ĉε with respect to x.

We now consider (32). Without any loss of generality, we fix i = 1, and introduce ν̌ as a solution
of the following numerical scheme

(35)

{
ν̌n+1,k = ν̌n,k + τLhν̌n,k + τ β̂1

n,kLhĈε
n,k

ν̌0,k = SσF
′
ε(S − exp(hk)).

Notice that the difference ν̄1 − ν̌ satisfies a similar scheme with initial condition being zero, and
having β̂1

(
LhC̄ε − LhĈε

)
as the inhomogeneous part. Therefore, we have the estimate

(36) |‖ν̄1 − ν̌‖|1 ≤ |‖β̂1‖|1 · |‖â2‖| · |‖DhĈε −DhC̄ε‖|,

with |‖f‖|j = |‖f × e−j|x|‖|. The right hand side of the last inequality, as it was shown above, goes
to zero when mesh(ΛN ) ↘ 0. Also, we notice that (35) is an explicit Euler scheme for the partial
differential equation:

(37)
{

∂τ ν̂
ε,1 = Lxν̂ε,1 + β̂1LxĈε, τ > 0, x ∈ R

ν̂ε,1(0, x) = SσF
′
ε(S − ex).

The explicit Euler scheme applied to the linear partial differential equations (37), is consistent in the
space of continuous functions with any of the norms |‖.‖|j (see, for example, [27], or [29]). And
since we know from (34) that DxĈε is bounded in the strip [0, τ̄ ]× R, and since the initial condition
of (37) is clearly infinitely smooth with all derivatives bounded, the stability of the scheme follows.
Moreover, from (43), we see that DxĈε(τ, x) is continuous and converges to zero as |x| → ∞,
uniformly in τ ∈ [0, τ̄ ]. This implies uniform continuity for supx∈R

∣∣∣e−|x|β̂1LxĈε
∣∣∣ as a function of

τ . Consistency and stability of the numerical scheme, together with uniform continuity of the norm
of inhomogeneous part, yield the convergence of ν̌ to ν̂ε,1, as N → ∞ (see [27], or [29]). Together
with (36), it implies the convergence of ν̄1 to ν̂ε,1, in |‖.‖|1.

Now, we need estimates on the derivatives of ν̄1. Applying the method used to derive (34), to
equation (32), we obtain
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(38) |‖dk
±hν̄1‖|1 ≤ c · ec·

∑2
i=1 |‖∂i

xâ2‖| ·

1 +

(
k∑

i=1

|‖∂i
xβ̂‖|1

)1 +

(
2+k∑
i=2

|‖∂i
xâ2‖|

)k


for k = 0, 1, 2, 3. Again, we use Arzela-Asccoli’s theorem to conclude that Dhν̄1 → Dν̂ε,1 in |‖.‖|1,
along some subsequence of {ΛN} (and without any loss of generality, we can assume that it is {ΛN}
itself). The same holds for ν̄i, with i > 1. Now introduce the solution µ̌ of

(39)

{
µ̌n+1,k = µ̌n,k + τLhµ̌n,k + τα̂n,kLhĈn,k + τ β̂n,k · Lhν̂ε

n,k

µ̌0,k = 1
2S2σ2F

′′
ε (S − ehk)

which is the explicit Euler scheme for

(40)
{

∂τ µ̂
ε = Lxµ̂ε + α̂LxĈε + β̂ · Lxν̂ε, τ > 0, x ∈ R

µ̂ε(0, x) = 1
2S2σ2F

′′
ε (S − ex).

Considering the numerical scheme for µ̄−µ̌, as it was done for ν̄1− ν̌, we conclude that |‖µ̄−µ̌‖|2 →
0 along {ΛN}. Notice that we have also shown that

|‖DxĈε‖|1 < ∞,
m∑

i=1

|‖Dxν̂ε,i‖|1 < ∞

therefore
|‖α̂LxĈε‖|2 < ∞, |‖β̂ · Lxν̂ε‖|2 < ∞

This implies stability for (39). As before, we deduce that the norm of the inhomogeneous part,

sup
x∈R

∣∣∣e−2|x|α̂LxĈε + e−2|x|β̂ · Lxν̂ε
∣∣∣ ,

is uniformly continuous in τ . And it means that µ̌ converges to µ̂ε. Therefore, µ̄ → µ̂ε along ΛN .
Moreover, as on side, we have the estimate

|‖µ̄‖|2 ≤ c + |‖α̂‖|2 · |‖â2‖| · |‖DhC̄‖|+ |‖β̂‖|1 · |‖â2‖| · |‖
m∑

i=1

Dhν̄i‖|.

Applying (34) and (38), we continue

|‖µ̄‖|2 ≤ c·

1 + |‖α̂‖|2 · |‖â2‖| · ec·
∑2

i=1 |‖∂i
xâ2‖| ·

1 +

(
2∑

i=1

|‖∂i
xβ̂‖|1

)1 +

(
4∑

i=2

|‖∂i
xâ2‖|

)2


The same estimate holds for µ̂ε. Using the notation introduced in Section 2, we have that, for any
t ∈ [0, t̄], both µ̄t and µ̂ε

t are bounded by

(41) c ·
(
1 + p5

2(t) · ec·λ1(t)
)
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Similarly, from (38) we deduce that ν̄i
t and ν̂ε,i

t are bounded from above by c · ec·λ1(t) for any i =
1, ...,m. Thus for any t ∈ [0, t̄], we have when N →∞ that

C̄t(τ̄ , x̄,ΛN ) → Ĉε
t (τ̄ , x̄)

ν̄t(τ̄ , x̄,ΛN ) → ν̂ε
t (τ̄ , x̄)

µ̄t(τ̄ , x̄,ΛN ) → µ̂ε
t (τ̄ , x̄)

Using the fact that

C̄t(τ̄ , x̄,ΛN ) = C̄0(τ̄ , x̄,ΛN ) +
∫ t

0
µ̄u(τ̄ , x̄, ΛN )du +

∫ t

0
ν̄u(τ̄ , x̄,ΛN ) · dBu

(notice that µ̂ε(τ̄ , x̄) and ν̂ε(τ̄ , x̄) are predictable by construction) the bounds derived above and the
dominated convergence theorem, we deduce that, for any t ∈ [0, t̄]

lim
N→∞

∫ t

0
µ̄u(τ̄ , x̄,ΛN )du =

∫ t

0
µ̂ε

u(τ̄ , x̄)du a.s.

This implies that
∫ t
0 ν̄u(τ̄ , x̄,ΛN ) · dBu a.s. has a limit, as N → ∞. On the other hand, again from

dominated convergence, we have that for any t ∈ [0, t̄]

lim
N→∞

E
∫ t

0
‖ν̄u(τ̄ , x̄,ΛN )− ν̂ε

u(τ̄ , x̄)‖2du = 0

almost surely, which yields ∫ t

0
ν̄u(τ̄ , x̄,ΛN ) · dBu →

∫ t

0
ν̂ε

u(τ̄ , x̄) · dBu

in probability. But, since we also know it converges almost surely, the limits should be the same, and
we conclude that

Ĉε
t (τ̄ , x̄) = Ĉε

0(τ̄ , x̄) +
∫ t

0
µ̂ε

u(τ̄ , x̄)du +
∫ t

0
ν̂ε

u(τ̄ , x̄) · dBu

This decomposition holds true for any choice of t̄, τ̄ , x̄. In addition, almost surely, µ̂ε
t and ν̂ε

t have
values in C1,2(R+ × R) by construction. This completes the proof.

Proof of Lemma 2
As before, we restrain (t, τ) to a fixed compact set [0, t̄] × [0, τ̄ ], and for the sake of notation the

constants c can depend upon (t̄, τ̄).
We fix ω, t and we let ε ↘ 0. From dominated convergence (recall the choice of the approximation

functions Fε) it is clear that Ĉε(τ, x) → Ĉ(τ, x) for every τ > 0, x ∈ R. Recall that, Feynman-Kac
formula implies that

DxĈε(τ, x) =
∫

R
Dxp̂(τ, x; 0, y)Fε(S − ey)dy

where p̂(τ, x; v, y), τ < v, is the fundamental solution of the partial differential equation (5). Since
(5) is uniformly parabolic, we can use well known estimates on the fundamental solutions (see for
example, [19]), allowing us to apply Fubini’s theorem and interchange the integration and differenti-
ation. Since

|Dxp̂(τ, x; 0, y)Fε(S − ey)| ≤ (S + ε) |Dxp̂(τ, x; 0, y)|
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and since the last expression is integrable in y, we can apply the dominated convergence theorem, and
conclude that

DxĈε(τ, x) →
∫

R
Dxp̂(τ, x; 0, y)F (S − ey)dy = DxĈ(τ, x)

as ε → 0. Next we introduce the fundamental solution q̂(v, y; τ, x) of

(42) ∂vu(v, y) = −1
2
â2

t (v, y)
(
∂2

yyu(v, y)− ∂yu(v, y)
)

which is in a sense, dual to (5). The exact relationship between (5) and (42), as well as p̂ and q̂, is
discussed in [12]. We will only use the fact that Dxp̂(τ, x; v, y) = ex−yDy q̂(v, y; τ, x). Let us now
derive several useful equalities. Starting from

DxĈε(τ, x) =
∫

R
ex−yDy q̂(0, y; τ, x)Fε(S − ey)dy

and integrating by parts we get

DxĈε(τ, x) =
∫

R
exq̂(0, y; τ, x)D∗

y(e
−yFε(S − ey))dy

where D∗
y = 1

2

(
∂2

yy + ∂y

)
. Computing the derivatives, we obtain

(43) DxĈε(τ, x) =
1
2

∫
R

q̂(0, y; τ, x)ex+yF ′′
ε (S − ey)dy.

Similarly

DxĈ(τ, x) =
∫

R
Dxp̂(τ, x; 0, y)F0(S − ey)dy(44)

=
∫

R
ex−yDy q̂(0, y; τ, x)(S − ey)+dy(45)

=
1
2
exq̂(0, log S; τ, x).(46)

Now consider ν̂ε,i(τ, x) for i = 2, ...,m. The Feynman-Kac formula gives

ν̂ε,i(τ, x) =
∫

R

∫ T

0
p̂(τ, x;u, y)β̂i(u, y)â2(u, y)DyĈ

ε(u, y)dudy

Recall that β̂i(u, y) is O(e|y|), and that â2(u, y) is bounded, so using (43), (44), and the estimates
on the increments of the derivatives of a fundamental solution given on p.255 of [19], we obtain the
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following estimate∣∣∣(∂y − 1)k
(
DyĈ

ε(u, y)−DyĈ(u, y)
)∣∣∣

=
1
2
ey

∣∣∣∣∫
R

∂k
y q̂(0, z;u, y)ezF ′′

ε (S − ez)dz − ∂k
y q̂(0, log S;u, y)

∣∣∣∣
≤ 1

2
ey

∫ 1∧S
ε

−1
ϕ(z)

∣∣∣∂k
y q̂(0, log(S − εz);u, y)− ∂k

y q̂(0, log S;u, y)
∣∣∣ dz

≤ c(t, ω) · u−
3/2+k

2 · ey ·∫ 1∧S
ε

−1
ϕ(z)

(
log(1− ε

S
z)
)1/2

(
exp

[
−c

(log(S − εz)− y)2

u

]
+ exp

[
−c

(log S − y)2

u

])
dz

for k = 0, 1 (recall that the function ϕ was introduced at the beginning of Section 2). For the rest of
the proof, the positive constants c do not depend on ω, t, ε.

Due to the regularity assumptions, c(t, ω) in the expression above is bounded by c · ec·λ1(t), where
the process λ1 was introduced in Section 2. Using (47) and estimates on fundamental solutions, we
get

|
∫ τ

0

∫
R

p̂(τ, x;u, y)â2(u, y)β̂i(u, y)
(
DyĈ

ε(u, y)−DyĈ(u, y)
)

dydu|

≤ c · λ2
2 · ec·λ1 ·

∫ 1∧S
ε

−1
ϕ(z)

(
log(1− ε

S
z)
)1/2

·(∫ τ

0

∫
R

1
(τ − u)1/2

exp
(
−c

(x− y)2

τ − u

)
e2|y| 1

u3/4
exp

(
−c

(log(S − εz)− y)2

u

)
dydu

+
∫ τ

0

∫
R

1
(τ − u)1/2

exp
(
−c

(x− y)2

τ − u

)
e2|y| 1

u3/4
exp

(
−c

(log S − y)2

u

)
dydu

)
dz.

Now, we fix δ > 0 small enough so that e2|y| ≤ c(δ)eδy2
and

−c
(x− y)2

τ − u
+ δ(x− y)2 ≤ −c1

(x− y)2

τ − u

for some c1 > 0. Such a choice is possible because τ − u changes on a compact set. This will take
care of the e2|y| term inside the integrands. Continuing with the first integral we get∫ τ

0

∫
R

1
(τ − u)1/2

exp
[
−c

(x− y)2

τ − u

]
e2|y| 1

u3/4
exp

[
−c

(log(S − εz)− y)2

u

]
dydu

≤ c(δ) · eδx2 ·
∫ τ

0

∫
R

1
(τ − u)1/2

1
u3/4

exp
[
−c1

(x− y)2

T − u

]
exp

[
−c1

(log(S − εz)− y)2

u

]
dydu

From [19] p.15, we conclude that the last expression is equal to

c(δ) · eδx2
τ1/4 exp

[
−c1

(x− log(S − εz))2

τ

]
.
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An analogous estimate holds for the second integral. Notice also that the function

B(y) :=
∫ 1∧ 1

y

−1
ϕ(z) (log(1− yz))1/2 dz

is continuous on R+ and satisfies

B(0) = 0, |B(x)| < c
(
1 + |log x|1/2

)
We can now finish the estimation. For i = 2, ...,m and ε ∈ (0, 1], the following inequality holds
almost surely for each t ∈ [0, t̄]∣∣∣∣∫ τ

0

∫
R

p̂(τ, x;u, y)â2(u, y)β̂i(u, y)
(
DyĈ

ε(u, y)−DyĈ(u, y)
)

dydu

∣∣∣∣
≤ c(δ) · λ2

2 · ec·λ1 · eδx2 ·B(
ε

S
) ·(

sup
z∈[−1,1]

exp
(
−c1

(x− log(S − z))2

τ

)
+ exp

(
−c1

(x− log S)2

τ

))

The last expression vanishes as ε → 0. This implies

(47) ν̂ε,i(τ, x) →
∫

R

∫ τ

0
p̂(τ, x;u, y)β̂i(u, y)LyĈ(u, y)dudy =: ν̂i(τ, x)

almost surely for any t ∈ [0, t̄]. Notice that, due to the properties of function B(y), the right hand side
of (47) is bounded over all S > 0 and ε ∈ (0, 1], by c(τ, x)λ2

2(t)e
c·λ1(t). Which yields convergence

in H2 sense, i.e.

E
∫ t

0
(ν̂ε,i

u (τ, x)− ν̂i
u(τ, x))2du → 0

For i = 1 we have to estimate the additional term

|p̂(τ, x;u, y)SσF
′
ε(S − ey)| ≤ Sσp̂(τ, x;u, y)

Recall that F
′
ε → F

′
0 = 1[0,∞) almost everywhere. Then, using (47), and the dominated convergence

theorem, we have, as ε → 0, that ν̂ε,1(τ, x) converges toward∫
R

∫ τ

0
p̂(τ, x;u, y)β̂1(u, y)LyĈ(u, y)dudy +

∫
R

p̂(τ, x; 0, y)SσF
′
0(S − ey)dy

which we define as ν̂1(τ, x). Since∣∣∣∣∫
R

p̂(τ, x; 0, y)SσF
′
0(S − ey)dy

∣∣∣∣ ≤ Sσ

and E
∫ t
0 S2

uσ2
udu < ∞, we can apply dominated convergence again and show that ν̂ε,1 → ν̂1 in H2

sense. Notice that ν̂i
t’s are the solutions of

(48)

 ∂τ ν̂
i
t = Lxν̂i

t + β̂i
tLxĈt, τ > 0, x ∈ R, i = 1, ...,m

ν̂1
t (0, x) = Stσt1(−∞,log St](x)

ν̂i
t(0, x) = 0, i = 2, ...,m
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Now, in a similar way, we pass to limit for µ̂ε, as ε → 0.

µ̂ε(τ, x) =
∫

R

∫ τ

0
p̂(τ, x;u, y)α̂(u, y)â2(u, y)DyĈ

ε(u, y)dudy(49)

+
∫

R

∫ τ

0
p̂(τ, x;u, y)â2(u, y)

(
β̂(u, y) ·Dyν̂

ε(u, y)
)

dudy(50)

+
1
2
S2σ2

∫
R

p̂(τ, x; 0, y)F
′′
ε (S − ey)dy(51)

Consider the first term in (49). For any τ > 0, as ε → 0, it converges to a similar expression, with Ĉ

instead of Ĉε. The proof is absolutely analogous to the derivation of (47), since the only difference
between the two is that β̂ has been substituted for α̂. Thus, we obtain

(52)

∣∣∣∫R
∫ τ
0 p̂(τ, x;u, y)α̂(u, y)â2(u, y)

(
DyĈ

ε(u, y)−DyĈ(u, y)
)

dudy
∣∣∣

≤ c(τ, x)λ2
2(t)e

c·λ1(t)

We now prove that the second term in (49) converges to∫
R

∫ τ

0
p̂(τ, x;u, y)â2(u, y)

(
β̂(u, y) ·Dyν̂(u, y)

)
dudy

To give an analogous estimate in this case, we first need to find bounds on Dxν̂ε,i−Dxν̂i. Using (47)
and the estimates on the derivatives of fundamental solution, we again follow the proof of (47) and
obtain the following estimate for i = 2, ...,m∣∣Dxν̂ε,i(τ, x)−Dxν̂i(τ, x)

∣∣
=
∣∣∣∣∫ τ

0

∫
R

ex−yDy q̂(u, y; τ, x)â2(u, y)β̂i(u, y)
(
DyĈ

ε(u, y)−DyĈ(u, y)
)

dydu

∣∣∣∣
=

1
2

∣∣∣∣∫ τ

0

∫
R

ex∂y q̂(u, y; τ, x) (∂y + 1)
(
e−yâ2(u, y)β̂i(u, y)

(
DyĈ

ε(u, y)−DyĈ(u, y)
))

dydu

∣∣∣∣
≤ c(δ) · λ2

2 · ec·λ1 · eδx2 · 1
τ3/4

∫ 1∧S
ε

−1
ϕ(z)

(
log(1− ε

S
z)
)1/2

·(
exp

(
−c

(x− log(S − εz))2

τ

)
+ exp

(
−c

(x− log S)2

τ

))
dz

For some small enough δ > 0. For i = 1, the same estimate holds, with the right hand side multiplied
by 1 + Sσ. To see this, notice that the only additional term appearing in the case i = 1 is:

1
2
Sσex

∣∣∣∣∫
R

∂y q̂(0, y; τ, x)eyF
′′
ε (S − ey)dy − ∂y q̂(0, log S; τ, x)

∣∣∣∣
and we can proceed as for (47). Now we can prove convergence of the second term in (49), as it was
done in (47). For i = 1, ...,m, we have

(53)

∣∣∣∫R
∫ τ
0 p̂(τ, x;u, y)â2(u, y)β̂i(u, y) ·

(
Dyν̂

ε,i(u, y)−Dyν̂
i(u, y)

)
dudy

∣∣∣
≤ c(τ, x) · λ2

2 · ec·λ1 · (1 + Sσ)



34 R. CARMONA & S. NADTOCHIY

Next, we show that the last term in (49) converges toward
1
2
Sσ2p̂(τ, x; 0, log S).

To estimate their difference we proceed again as in (47)∣∣∣∣12S2σ2

∫
R

p̂(τ, x; 0, y)F
′′
ε (S − exp(y))dy − 1

2
Sσ2p̂(τ, x; 0, log S)

∣∣∣∣(54)

≤ 1
2
S2σ2

∫ 1

−1

∣∣∣∣ 1
S − εy

p̂(τ, x; 0, log(S − εy))− 1
S

p̂(τ, x; 0, log S)
∣∣∣∣ϕ(y)dy(55)

≤ 1
2
S2σ2ε · sup

S>0

∣∣∣∣∂S

(
1
S

p̂(τ, x; 0, log S)
)∣∣∣∣(56)

≤ ε · c(τ, x) · σ2S2 · ec·λ1(57)

Collecting together (52), (53) and (54), we have, almost surely for every t ∈ [0, τ̄ ], as ε → 0

lim
ε→0

µ̂ε
t (τ, x) = µ̆t(τ, x) +

1
2
Stσ

2
t p̂t(τ, x, 0, log St)

which we define as µ̂t(τ, x), where we used

(58) µ̆(τ, x) =
∫

R

∫ τ

0
p̂(τ, x;u, y)â2(u, y)

(
α̂(u, y)DyĈ(u, y) + β̂(u, y) ·Dyν̂(u, y)

)
dudy

It is clear from the previous estimates that we also have almost surely for every t ∈ [0, t̄]

lim
ε→0

∫ t

0
|µ̂ε

u(τ, x)− µ̂u(τ, x)| du = 0.

Thus, since we are free to choose t̄ and τ̄ , for every fixed (τ, x), we have constructed predictable
processes {ν̂t(τ, x), µ̂t(τ, x)}t≥0 such that almost surely for every t, the random variables ν̂t and µ̂t

take values in C1,2(R++, R), by construction. In the process, we have also shown that, almost surely,
Ĉε

t and
∫ t
0 µ̂ε

udu converge to Ĉt and
∫ t
0 µ̂udu respectively. In addition, ν̂ε converges to ν̂ inH2 sense.

All this implies that there exists a subsequence εn ↘ 0, such that
∫ t
0 ν̂εn

u · dBu →
∫ t
0 ν̂u · dBu in

probability. Now, applying the same argument as in the proof of Lemma 1, we obtain for each (τ, x)
the desired decomposition

Ĉt(τ, x) = Ĉ0(τ, x) +
∫ t

0
µ̂u(τ, x)du +

∫ t

0
ν̂u(τ, x) · dBu

and this completes the proof.

APPENDIX B

Proof of Proposition 1
Since we consider τ ↘ 0, we can assume that τ ≤ T for some positive constant T , and as before,

we will sometimes drop the subscript t to streamline the notation. Recall the decomposition

µ̂t(τ, x) = µ̄t(τ, x) +
1
2
Stσ

2
t p̂t(τ, x, 0, log St)
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where the definition of µ̄ is given in (58). If we fix ω, t and h ∈ C∞
0 (R), we have

∫
R

h(x)µ̂(τ, x)dx =
∫

R

∫
R

∫ τ

0
h(x)p̂(τ, x;u, y)α̂(u, y)â2(u, y)ey q̂(0, log S;u, y)dudydx(59)

+
∫

R

∫
R

∫ τ

0
h(x)p̂(τ, x;u, y)â2(u, y)

(
β̂(u, y) ·Dyν̂(u, y)

)
dudydx(60)

+
1
2
Sσ2

∫
R

h(x)p̂(τ, x; 0, log S)dx.(61)

Let us first prove that the first term in (59) vanishes as τ goes to zero.

∣∣∣∣∫
R

∫
R

∫ τ

0
h(x)p̂(τ, x;u, y)α̂(u, y)â2(u, y)ey q̂(0, log S;u, y)dudydx

∣∣∣∣
≤ c sup

x∈R
|h(x)| ·∫

R

∫
R

∫ τ

0

1√
τ − u

exp
(
−c

(x− y)2

τ − u

)
1√
u

exp
(

2|y| − c
(y − log S)2

u

)
dudydx

≤ c · sup
x∈R

|h(x)| ·
∫ τ

0

∫
R

1√
u

exp
(

2|y| − c
(y − log S)2

u

)
dydu

≤ τc(S) · sup
x∈R

|h(x)| → 0

which indeed goes to 0 as τ ↘ 0. As explained earlier, we denote by c a generic positive constant
that doesn’t depend on (τ, x) and which can change every time it appears in a formula. Now we need
to recall some estimates from the proof of Lemma 2.

∣∣Dxν̂i(τ, x)
∣∣ =

∣∣∣∣∫
R

∫ τ

0
Dxp̂(τ, x;u, y)β̂i(u, y)â2(u, y)ey q̂(0, log S;u, y)dudy

+
1
2
Sσ · ex · ∂z q̂(0, z; τ, x) |z=log S

∣∣∣∣
≤ cex2

∫ τ

0

∫
R

1
τ − u

exp
(
−c

(x− y)2

τ − u

)
1
u

exp
(
−c

(y − log S)2

u

)
dydu

+ cSσ · 1
τ

exp
(
−c

(x− log S)2

τ

)
= c

(
ex2 1√

τ
+ Sσ · 1

τ

)
exp

(
−c

(x− log S)2

τ

)
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Notice that for all small enough τ > 0, we have exp
(
−c (x−log S)2

τ + x2 + x
)
≤ c(S). Using this,

we estimate the second term in (59)∣∣∣∣∫
R

∫
R

∫ τ

0
h(x)p̂(τ, x;u, y)â2(u, y)

(
β̂(u, y)Dyν̂(u, y)

)
dudydx

∣∣∣∣
≤ c(S) · sup

x∈R
|h(x)|

[
Leb(supp(h)) ·

∫ τ

0

1√
u

du

∫
R

p̂(τ, x;u, y)dy

+
∫

supp(h)
ex2

∫
R

∫ τ

0

1
u

1√
τ − u

exp
(
−c

(y − log S)2

u

)
exp

(
−c

(y − x)2

τ − u

)
dudydx

]

≤
√

τc(S) sup
x∈R

|h(x)|
(

Leb(supp(h)) + sup
x∈R

|ex2 |
)

which goes to zero as τ ↘ 0. And, due to the properties of the fundamental solution, the third term
in (59) converges to (1/2)Sσ2h(log S) which together with (62), (62), completes the proof.

Proof of Proposition 2
For the sake of notation, we drop the subscript t as it does not change throughout the proof. First

fix i = 2, ...,m. Then, using the results and notation introduced in these two appendices∣∣ν̂i(τ, x)− ν̂i(0, x)
∣∣

=
∣∣ν̂i(τ, x)

∣∣
≤
∫

R

∫ τ

0
e|y|p̂(τ, x;u, y) ·

∣∣∣β̂i(u, y)e−|y|
∣∣∣ · ∣∣â2(u, y)

∣∣ · ∣∣∣DyĈ(u, y)
∣∣∣ dudy

≤ λ2
2

∫
R

∫ τ

0
e2|y|p̂(τ, x;u, y)q̂(0, log S;u, y)dudy

≤ cλ2
2e

c·λ1ex2∫
R

∫ τ

0

1
(τ − u)1/2

exp
(
−c · (c · x− y)2

T − u

)
1

u1/2
exp

(
−c · (y − log S)2

u

)
dudy

≤ λ2
2e

cλ1
√

τex2
.

As before, we use the notation c for a positive constant which does not depend on (t, τ, ω) and whose
value can change every time it appears in a formula. For i = 1 we need to estimate the additional
term

(62)
∣∣∣∣∫

R
p̂(τ, x; 0, y)Sσ1{S−ey≥0}dy − Sσ1{S−ex≥0}

∣∣∣∣ ≤ 2Sσ.

Notice that the expression on the right side is a square integrable process. From the properties of the
fundamental solution we also know that, almost surely for almost every x ∈ R

lim
τ↘0

∣∣∣∣∫
R

p̂(τ, x; 0, y)Sσ1{S−ey≥0}dy − Sσ1{S−ex≥0}

∣∣∣∣ = 0.
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Now, for any t, using (62), we get

E
∫
K

(∫ t

0
(ν̂u(τ, x)− ν̂u(0, x)) · dBu

)2

dx

=
m∑

i=1

∫
K

E
∫ t

0

(
ν̂i

u(τ, x)− ν̂i
u(0, x)

)2
dudx

≤ c · τ ·
(∫

K
ex2

dx

)(
E
∫ t

0
ec·λ1(u)λ4

2(u)du

)
+
∫
K

E

[∫ t

0

(∫
R

S2
uσ2

up̂u(τ, x; 0, y)1(Su−ey≥0)dy − S2
uσ2

u1(Su−ex≥0)

)2

du

]
dx.

It is clear that the first term in the expression above goes to zero as τ ↘ 0. The second one does
so due to estimate (62) and the dominated convergence theorem. To prove the convergence of Ĉ, we
notice first that, almost surely for any t∣∣∣Ĉt(τ, x)− (St − ex)+

∣∣∣ ≤ 2St,

and that
lim
τ↘0

∣∣∣Ĉt(τ, x)− (St − ex)+
∣∣∣ = 0,

so that the dominated convergence theorem yields

lim
τ↘0

E
∫
K

(
Ĉt(τ, x)− (St − ex)+

)2
dx = 0

which completes the proof.
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