No	Centre	Author	Title	Abstract
1	CFAP	L. Vanessa Smith	Volatility-Return	As Bekaert and Wu (2000) document, traditionally in finance stock return volatility is
		& Taksahi	Analysis using	modeled as negatively correlated with stock returns, due to the "leverage effects" a
		Yamagata	Dynamic Panels	drop in the value of the stock (negative return) increases financial leverage, which makes
				the stock riskier and increases its volatility (Black, 1976, Christie, 1982). Another
				explanation of such an asymmetry is the volatility feedback effect if volatility is
		CAN THIS		priced, an anticipated increase in volatility raises the required return on equity, leading to
		PAPER BE		an immediate stock price decline. Apart from the direction of the causality, the empirical
		SCHEDULED		results on these effects are mixed and sometimes conflicting. Using the (general)
		FOR THE		autoregressive conditional heteroskedasticity in mean, (G)ARCH-in-mean model,
		SECOND DAY		French, Schwert and Stambaugh (1987) and Campbell and Hentschel, (1992) find weak
		$(22^{ND})?$		evidence of a positive relation between the conditional volatility and the return, while,
				Turner, Startz and Nelson (1989), Glosten, Jagannathan and Runkle (1993) and Nelson
				(1991) find a negative relation. Ghysels, Santa-Clara and Valkanov (2005) find a
				significant positive effect of the conditional variance on the one-month ahead stock
				market return, where the former is estimated as past daily squared returns (mixed data
				sampling (MIDAS) approach).
				Recently a growing body of the research community has turned its attention to the
				Chan Boll and Boss (1086) specify macroaconomic and financial markets. Allong others
				chen, Kon and Koss (1980) specify macroeconomic and financial market variables that
				(2001) show that the consumption factor model can explain the portfolio as well as does
				(2001) show that the consumption factor model can explain the portion as well as does the three-factor model of Fama and French (1996): Fornari and Mele (2006) have found
				that indicators of financial volatility predict roughly 30% of post-war economic activity
				in the US
				There is evidence that suggests there can be significant effects of common volatility
				on returns. Goval and Santa-Clara (2003) found a significant positive effect on market
				return of the cross-section average of the squared residuals of the Fama-French three
				factor model. Hong, Torous and ValKanov (2007) reported that the returns of a few
				industries are significantly predictable by volatility of market return. Connor, Korajczyk

		and Linton (2006) develop a dynamic approximate factor model in which returns are
		time-series heteroskedastic. In their model the heteroskedasticity is divided into three
		components: a factor-related component, a common (unconditional) beteroskedastic
		component and the latter is multiplied by a purely asset specific component. Each of
		these components is modeled separately. A factor related component is estimated by
		unese components is modeled separately. A factor-related component is estimated by
		principal components, and the common (unconditional) neteroskedastic component is
		estimated simultaneously using the method proposed by Jones (2001). The logarithm of
		common heteroskedasticity over time is then modeled using a nonparametric local trend
		model with stationary innovations. The purely asset-specific component is modeled as
		variants of GARCH. The limitation of this approach is that it is difficult to extend the
		GARCH-in-mean type model to examine the volatility feedback effect.
		To measure the inter-relationship between returns and volatilities, some authors have
		adopted a vector autoregression (VAR) analysis. Whitelaw (1994) considers a VAR
		model using fitted moments from a set of first-stage predictive regressions as proxies for
		the unobservable conditional mean and volatility; see also Ludvigson and Ng (2006) for
		a related approach. Brandt and Kang (2004) model the conditional mean and volatility of
		stock returns as a latent VAR process using simulated maximum likelihood based
		importance sampling More recently Dufour Garcia and Taamouti (2007) quantify the
		leverage and volatility feedback effects by applying causality measures using high-
		frequency equity returns data
		In view of the above literature, we develop a panel vector autoregrassion model to
		in view of the above interaction, we develop a panel vector autoregression model to
		examine the dynamic interrelationship among feturn and volatinity across
		assets/industries as well as macroeconomy, under neterogeneity and cross section
		dependence, which is an extension of the work by Dees, Di Mauro, Pesaran and Smith
		(2007), Pesaran (2006), Pesaran, Schuermann and Weiner (2004). We control for
		unobserved correlations of volatility and returns across assets/industries by including
		weighted cross section averages of return and volatility in addition to common
		macroeconomic variables, then the system of asset/industry returns and volatilities are
		solved as a function of macroeconomic variables and past asset/industry returns and
		volatilities. This approach has three important advantages comparing to existing methods
		over return-volatility analysis. First, this approach allows us to examine the return-

				volatility relationship at three different levels/directions: contemporaneous leverage and volatility feedback effects from the market level to the industry level; leverage and volatility feedback effects at the industrial level as well as at the market level. Second, the predictability of asset/industry stock returns for future market return, whose empirical evidence has been reported in Hong, Torous and ValKanov (2007), is allowed in our approach. Third, dynamic interrelationship across industries and macroeconomies can be captured by our framework, regardless of how large the cross section dimension (N), unlike the traditional seemingly unrelated regression (SUR) framework. We provide impulse response analysis to visualise such a dynamic interrelationship across industry return and volatility as well as the macroeconomics and financial variables. Also the out of sample analysis is provided.
2	CFAP	Mardi Dungey, Michael McKenzie & Vanessa Smith	News, No-News and Jumps in the US Treasury Market	Sufficiently fast and large disruptions to the continuous price process can be detected in high frequency data as jumps. Cojumping occurs when jumps occur contemporaneously across assets. This paper assesses cojumping in the US term structure using the Cantor-Fitzgerald tick dataset of 2002-2006. Most cojumping occurs in association with responses to scheduled news announcements, but little evidence emerges that the existence or extent of a jump relates to the size of the news surprise. Around one-third of cojumps occur independently of any news announcements.
3	CFR	Michael Dempster, Elena A. Medova, S. W. Yang	Empirical Copulas for CDO Tranche Pricing Using Relative Entropy	We discuss the general optimization problem of choosing a copula with minimum entropy relative to a specified copula and a computationally intensive procedure to solve its dual. These techniques are applied to constructing an empirical copula for CDO tranche pricing. The empirical copula is chosen to be as close as possible to the industry standard Guassian copula while ensuring a close fit to market tranche quotes. We find that the empirical copula performs noticeably better than the base correlation approach in pricing non-standard tranches and that the market view of default dependence is influenced by maturity.
4	CIMF	M. Hashem Pesaran & Paolo Zaffaroni	Optimal Asset Allocation with Facor Models for Large Portfolios	This paper characterizes the asymptotic behaviour, as the number of assets gets arbitrarily large, of the portfolio weights for the class of tangency portfolios belonging to the Markowitz paradigm. We assume that the joint distribution of asset returns is described by a dynamic factor models, with possibly heteroskedastic factors and idiosyncratic components. The latter could exhibit a substantial degree of cross-sectional

5	CRQF	L. Chris Rogers , Jose Scheinkman	Liquidity premia in a model of two bonds	dependence. Under mild conditions, correct specification of the conditional distribution of the factors turns out to be less important than the distribution of the factor loadings and of the idiosyncratic components. We derive various limit approximations of the optimal weights. Our results shed light on several other issues pertinent to the large-asset behaviour of optimal portfolio weights, such as on the form of diversifiability of the portfolio weights, as well as on the issue of the number of dominant factors. Can two bonds with identical coupons trade at different prices? This talk explores a simple search model where differences in the volume of trading in two different bonds with identical coupons may lead to differences in pricing, the `on the run' effect.
6	CFQF	L. Chris Rogers & Mike	The implied volatility surface	This note explores the analogy between the dynamics of the interest rate term structure and the implied volatility surface of a stock. In particular, we prove an impossibility
		Tehranchi	does not move by	theorem conjectured by Steve Ross.

1		